Cargando…
Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
Layered transition‐metal (TM) oxides are ideal hosts for Li(+) charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165493/ https://www.ncbi.nlm.nih.gov/pubmed/35347886 http://dx.doi.org/10.1002/advs.202200498 |
_version_ | 1784720407065001984 |
---|---|
author | Zhu, He Yao, Zhenpeng Zhu, Hekang Huang, Yalan Zhang, Jian Li, Cheng Chao Wiaderek, Kamila M. Ren, Yang Sun, Cheng‐Jun Zhou, Hua Fan, Longlong Chen, Yanan Xia, Hui Gu, Lin Lan, Si Liu, Qi |
author_facet | Zhu, He Yao, Zhenpeng Zhu, Hekang Huang, Yalan Zhang, Jian Li, Cheng Chao Wiaderek, Kamila M. Ren, Yang Sun, Cheng‐Jun Zhou, Hua Fan, Longlong Chen, Yanan Xia, Hui Gu, Lin Lan, Si Liu, Qi |
author_sort | Zhu, He |
collection | PubMed |
description | Layered transition‐metal (TM) oxides are ideal hosts for Li(+) charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium‐ion batteries. Herein a Ti/Mg co‐doping strategy for a model P2‐Na(2/3)Ni(1/3)Mn(2/3)O(2) cathode material is put forward to activate charge compensation through highly hybridized O(2) (p) —TM(3) (d) covalent bonds. In this way, the interlayer O—O electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2–O2 interlayer contraction into a moderate solid‐solution‐type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches. |
format | Online Article Text |
id | pubmed-9165493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91654932022-06-04 Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode Zhu, He Yao, Zhenpeng Zhu, Hekang Huang, Yalan Zhang, Jian Li, Cheng Chao Wiaderek, Kamila M. Ren, Yang Sun, Cheng‐Jun Zhou, Hua Fan, Longlong Chen, Yanan Xia, Hui Gu, Lin Lan, Si Liu, Qi Adv Sci (Weinh) Research Articles Layered transition‐metal (TM) oxides are ideal hosts for Li(+) charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium‐ion batteries. Herein a Ti/Mg co‐doping strategy for a model P2‐Na(2/3)Ni(1/3)Mn(2/3)O(2) cathode material is put forward to activate charge compensation through highly hybridized O(2) (p) —TM(3) (d) covalent bonds. In this way, the interlayer O—O electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2–O2 interlayer contraction into a moderate solid‐solution‐type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches. John Wiley and Sons Inc. 2022-03-28 /pmc/articles/PMC9165493/ /pubmed/35347886 http://dx.doi.org/10.1002/advs.202200498 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhu, He Yao, Zhenpeng Zhu, Hekang Huang, Yalan Zhang, Jian Li, Cheng Chao Wiaderek, Kamila M. Ren, Yang Sun, Cheng‐Jun Zhou, Hua Fan, Longlong Chen, Yanan Xia, Hui Gu, Lin Lan, Si Liu, Qi Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode |
title | Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode |
title_full | Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode |
title_fullStr | Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode |
title_full_unstemmed | Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode |
title_short | Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode |
title_sort | unblocking oxygen charge compensation for stabilized high‐voltage structure in p2‐type sodium‐ion cathode |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165493/ https://www.ncbi.nlm.nih.gov/pubmed/35347886 http://dx.doi.org/10.1002/advs.202200498 |
work_keys_str_mv | AT zhuhe unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT yaozhenpeng unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT zhuhekang unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT huangyalan unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT zhangjian unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT lichengchao unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT wiaderekkamilam unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT renyang unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT sunchengjun unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT zhouhua unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT fanlonglong unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT chenyanan unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT xiahui unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT gulin unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT lansi unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode AT liuqi unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode |