Cargando…

Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode

Layered transition‐metal (TM) oxides are ideal hosts for Li(+) charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, He, Yao, Zhenpeng, Zhu, Hekang, Huang, Yalan, Zhang, Jian, Li, Cheng Chao, Wiaderek, Kamila M., Ren, Yang, Sun, Cheng‐Jun, Zhou, Hua, Fan, Longlong, Chen, Yanan, Xia, Hui, Gu, Lin, Lan, Si, Liu, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165493/
https://www.ncbi.nlm.nih.gov/pubmed/35347886
http://dx.doi.org/10.1002/advs.202200498
_version_ 1784720407065001984
author Zhu, He
Yao, Zhenpeng
Zhu, Hekang
Huang, Yalan
Zhang, Jian
Li, Cheng Chao
Wiaderek, Kamila M.
Ren, Yang
Sun, Cheng‐Jun
Zhou, Hua
Fan, Longlong
Chen, Yanan
Xia, Hui
Gu, Lin
Lan, Si
Liu, Qi
author_facet Zhu, He
Yao, Zhenpeng
Zhu, Hekang
Huang, Yalan
Zhang, Jian
Li, Cheng Chao
Wiaderek, Kamila M.
Ren, Yang
Sun, Cheng‐Jun
Zhou, Hua
Fan, Longlong
Chen, Yanan
Xia, Hui
Gu, Lin
Lan, Si
Liu, Qi
author_sort Zhu, He
collection PubMed
description Layered transition‐metal (TM) oxides are ideal hosts for Li(+) charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium‐ion batteries. Herein a Ti/Mg co‐doping strategy for a model P2‐Na(2/3)Ni(1/3)Mn(2/3)O(2) cathode material is put forward to activate charge compensation through highly hybridized O(2) (p) —TM(3) (d) covalent bonds. In this way, the interlayer O—O electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2–O2 interlayer contraction into a moderate solid‐solution‐type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.
format Online
Article
Text
id pubmed-9165493
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91654932022-06-04 Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode Zhu, He Yao, Zhenpeng Zhu, Hekang Huang, Yalan Zhang, Jian Li, Cheng Chao Wiaderek, Kamila M. Ren, Yang Sun, Cheng‐Jun Zhou, Hua Fan, Longlong Chen, Yanan Xia, Hui Gu, Lin Lan, Si Liu, Qi Adv Sci (Weinh) Research Articles Layered transition‐metal (TM) oxides are ideal hosts for Li(+) charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium‐ion batteries. Herein a Ti/Mg co‐doping strategy for a model P2‐Na(2/3)Ni(1/3)Mn(2/3)O(2) cathode material is put forward to activate charge compensation through highly hybridized O(2) (p) —TM(3) (d) covalent bonds. In this way, the interlayer O—O electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2–O2 interlayer contraction into a moderate solid‐solution‐type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches. John Wiley and Sons Inc. 2022-03-28 /pmc/articles/PMC9165493/ /pubmed/35347886 http://dx.doi.org/10.1002/advs.202200498 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Zhu, He
Yao, Zhenpeng
Zhu, Hekang
Huang, Yalan
Zhang, Jian
Li, Cheng Chao
Wiaderek, Kamila M.
Ren, Yang
Sun, Cheng‐Jun
Zhou, Hua
Fan, Longlong
Chen, Yanan
Xia, Hui
Gu, Lin
Lan, Si
Liu, Qi
Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
title Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
title_full Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
title_fullStr Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
title_full_unstemmed Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
title_short Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode
title_sort unblocking oxygen charge compensation for stabilized high‐voltage structure in p2‐type sodium‐ion cathode
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165493/
https://www.ncbi.nlm.nih.gov/pubmed/35347886
http://dx.doi.org/10.1002/advs.202200498
work_keys_str_mv AT zhuhe unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT yaozhenpeng unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT zhuhekang unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT huangyalan unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT zhangjian unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT lichengchao unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT wiaderekkamilam unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT renyang unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT sunchengjun unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT zhouhua unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT fanlonglong unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT chenyanan unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT xiahui unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT gulin unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT lansi unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode
AT liuqi unblockingoxygenchargecompensationforstabilizedhighvoltagestructureinp2typesodiumioncathode