Cargando…
High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites
[Image: see text] Drug metabolite identification is a bottleneck of drug metabolism studies due to the need for time-consuming chromatographic separation and structural confirmation. Ion mobility-mass spectrometry (IM-MS), on the other hand, separates analytes on a rapid (millisecond) time scale and...
Autores principales: | Ross, Dylan H., Seguin, Ryan P., Krinsky, Allison M., Xu, Libin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165597/ https://www.ncbi.nlm.nih.gov/pubmed/35548857 http://dx.doi.org/10.1021/jasms.2c00111 |
Ejemplares similares
Ejemplares similares
-
Large-Scale Structural Characterization of Drug and
Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry
por: Hines, Kelly M., et al.
Publicado: (2017) -
Collision Cross Section Prediction Based on Machine Learning
por: Li, Xiaohang, et al.
Publicado: (2023) -
Collision Cross Section Prediction with Molecular Fingerprint Using Machine Learning
por: Yang, Fan, et al.
Publicado: (2022) -
DrugMetab: An Integrated Machine Learning and Lexicon Mapping Named Entity Recognition Method for Drug Metabolite
por: Wu, Heng‐Yi, et al.
Publicado: (2018) -
MF-PCBA: Multifidelity
High-Throughput Screening Benchmarks
for Drug Discovery and Machine Learning
por: Buterez, David, et al.
Publicado: (2023)