Cargando…
EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma
OBJECTIVE: In this study, we aim to establish a non-invasive tool to predict epidermal growth factor receptor (EGFR) mutation status and subtypes based on radiomic features of computed tomography (CT). METHODS: A total of 233 lung adenocarcinoma patients were investigated and randomly divided into t...
Autores principales: | Chen, Quan, Li, Yan, Cheng, Qiguang, Van Valkenburgh, Juno, Sun, Xiaotian, Zheng, Chuansheng, Zhang, Ruiguang, Yuan, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165655/ https://www.ncbi.nlm.nih.gov/pubmed/35669165 http://dx.doi.org/10.2147/OTT.S352619 |
Ejemplares similares
-
Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features
por: Liu, Qiufang, et al.
Publicado: (2020) -
CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses
por: Mei, Dongdong, et al.
Publicado: (2018) -
Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma
por: Yang, Chunsheng, et al.
Publicado: (2020) -
Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma
por: Zhang, Baihua, et al.
Publicado: (2021) -
Development of a Nomogram Based on 3D CT Radiomics Signature to Predict the Mutation Status of EGFR Molecular Subtypes in Lung Adenocarcinoma: A Multicenter Study
por: Zhang, Guojin, et al.
Publicado: (2022)