Cargando…

A simple method to align cells on 3D hydrogels using 3D printed molds

Vascular smooth muscle cells align circumferentially around the vessel lumen, which allows these cells to control vascular tone by contracting and relaxing. It is essential that this circumferential alignment is recapitulated in tissue engineered blood vessels. While many methods have been reported...

Descripción completa

Detalles Bibliográficos
Autores principales: Vo, Jesse, Mastoor, Yusuf, Mathieu, Pattie S., Clyne, Alisa Morss
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165732/
https://www.ncbi.nlm.nih.gov/pubmed/35663509
http://dx.doi.org/10.1016/j.bea.2021.100001
_version_ 1784720451274014720
author Vo, Jesse
Mastoor, Yusuf
Mathieu, Pattie S.
Clyne, Alisa Morss
author_facet Vo, Jesse
Mastoor, Yusuf
Mathieu, Pattie S.
Clyne, Alisa Morss
author_sort Vo, Jesse
collection PubMed
description Vascular smooth muscle cells align circumferentially around the vessel lumen, which allows these cells to control vascular tone by contracting and relaxing. It is essential that this circumferential alignment is recapitulated in tissue engineered blood vessels. While many methods have been reported to align cells on 2D polymeric substrates, few techniques enable cell alignment on a 3D physiologically relevant hydrogel substrate. We hypothesized that the ridges inherent to the sides of fused deposition modeling 3D printed molds could be used to topographically pattern both stiff and soft substrates and thereby align cells on flat and curved surfaces. Flat and curved molds with 150, 250, and 350 μm ridges were 3D printed and used to topographically pattern polydimethylsiloxane and gelatin-methacryloyl. The ridges transferred to both substrates with less than 10% change in ridge size. Vascular smooth muscle cells were then seeded on each substrate, and nuclear and actin alignment were quantified. Cells were highly aligned with the molded ridges to a similar extent on both the stiffer polydimethylsiloxane and the softer gelatin-methacryloyl substrates. These data confirm that fused deposition modeling 3D printed molds are a rapid, cost-effective way to topographically pattern stiff and soft substrates in varied 3D shapes. This method will enable investigators to align cells on 3D polymeric and hydrogel structures for tissue engineering and other applications.
format Online
Article
Text
id pubmed-9165732
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-91657322022-06-04 A simple method to align cells on 3D hydrogels using 3D printed molds Vo, Jesse Mastoor, Yusuf Mathieu, Pattie S. Clyne, Alisa Morss Biomed Eng Adv Article Vascular smooth muscle cells align circumferentially around the vessel lumen, which allows these cells to control vascular tone by contracting and relaxing. It is essential that this circumferential alignment is recapitulated in tissue engineered blood vessels. While many methods have been reported to align cells on 2D polymeric substrates, few techniques enable cell alignment on a 3D physiologically relevant hydrogel substrate. We hypothesized that the ridges inherent to the sides of fused deposition modeling 3D printed molds could be used to topographically pattern both stiff and soft substrates and thereby align cells on flat and curved surfaces. Flat and curved molds with 150, 250, and 350 μm ridges were 3D printed and used to topographically pattern polydimethylsiloxane and gelatin-methacryloyl. The ridges transferred to both substrates with less than 10% change in ridge size. Vascular smooth muscle cells were then seeded on each substrate, and nuclear and actin alignment were quantified. Cells were highly aligned with the molded ridges to a similar extent on both the stiffer polydimethylsiloxane and the softer gelatin-methacryloyl substrates. These data confirm that fused deposition modeling 3D printed molds are a rapid, cost-effective way to topographically pattern stiff and soft substrates in varied 3D shapes. This method will enable investigators to align cells on 3D polymeric and hydrogel structures for tissue engineering and other applications. 2021-06 2021-03-22 /pmc/articles/PMC9165732/ /pubmed/35663509 http://dx.doi.org/10.1016/j.bea.2021.100001 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Article
Vo, Jesse
Mastoor, Yusuf
Mathieu, Pattie S.
Clyne, Alisa Morss
A simple method to align cells on 3D hydrogels using 3D printed molds
title A simple method to align cells on 3D hydrogels using 3D printed molds
title_full A simple method to align cells on 3D hydrogels using 3D printed molds
title_fullStr A simple method to align cells on 3D hydrogels using 3D printed molds
title_full_unstemmed A simple method to align cells on 3D hydrogels using 3D printed molds
title_short A simple method to align cells on 3D hydrogels using 3D printed molds
title_sort simple method to align cells on 3d hydrogels using 3d printed molds
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165732/
https://www.ncbi.nlm.nih.gov/pubmed/35663509
http://dx.doi.org/10.1016/j.bea.2021.100001
work_keys_str_mv AT vojesse asimplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT mastooryusuf asimplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT mathieupatties asimplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT clynealisamorss asimplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT vojesse simplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT mastooryusuf simplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT mathieupatties simplemethodtoaligncellson3dhydrogelsusing3dprintedmolds
AT clynealisamorss simplemethodtoaligncellson3dhydrogelsusing3dprintedmolds