Cargando…
Effects of Rucksack Military Accessory on Gait Dynamic Stability
Various factors are responsible for injuries that occur in the U.S. Army soldiers. In particular, rucksack load carriage equipment influences the stability of the lower extremities and possibly affects gait balance. The objective of this investigation was to assess the gait and local dynamic stabili...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165734/ https://www.ncbi.nlm.nih.gov/pubmed/35663591 http://dx.doi.org/10.36001/ijphm.2021.v12i4.2778 |
_version_ | 1784720451752165376 |
---|---|
author | Moon, Seong H. Frames, Christopher W. Soangra, Rahul Lockhart, Thurmon E. |
author_facet | Moon, Seong H. Frames, Christopher W. Soangra, Rahul Lockhart, Thurmon E. |
author_sort | Moon, Seong H. |
collection | PubMed |
description | Various factors are responsible for injuries that occur in the U.S. Army soldiers. In particular, rucksack load carriage equipment influences the stability of the lower extremities and possibly affects gait balance. The objective of this investigation was to assess the gait and local dynamic stability of the lower extremity of five subjects as they performed a simulated rucksack march on a treadmill. The Motek Gait Real-time Interactive Laboratory (GRAIL) was utilized to replicate the environment of the rucksack march. The first walking trial was without a rucksack and the second set was executed with the All-Purpose Lightweight Individual Carrying Equipment (ALICE), an older version of the rucksack, and the third set was executed with the newer rucksack version, Modular Lightweight Load Carrying Equipment (MOLLE). In this experiment, the Inertial Measurement Unit (IMU) system, Dynaport was used to measure the ambulatory data of the subject. This experiment required subjects to walk continuously for 200 seconds with a 20kg rucksack, which simulates the real rucksack march training. To determine the dynamic stability of different load carriage and normal walking condition, Local Dynamic Stability (LDS) was calculated to quantify its stability. The results presented that comparing Maximum Lyapunov Exponent (LyE) of normal walking was significantly lower compared to ALICE (P=0.000007) and MOLLE (P=0.00003), however, between ALICE and MOLLE rucksack walking showed no significant difference (P=0.441). The five subjects showed significantly improved dynamic stability when walking without a rucksack in comparison with wearing the equipment. In conclusion, we discovered wearing a rucksack result in a significant (P < 0.0001) reduction in dynamic stability. |
format | Online Article Text |
id | pubmed-9165734 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-91657342022-06-04 Effects of Rucksack Military Accessory on Gait Dynamic Stability Moon, Seong H. Frames, Christopher W. Soangra, Rahul Lockhart, Thurmon E. Int J Progn Health Manag Article Various factors are responsible for injuries that occur in the U.S. Army soldiers. In particular, rucksack load carriage equipment influences the stability of the lower extremities and possibly affects gait balance. The objective of this investigation was to assess the gait and local dynamic stability of the lower extremity of five subjects as they performed a simulated rucksack march on a treadmill. The Motek Gait Real-time Interactive Laboratory (GRAIL) was utilized to replicate the environment of the rucksack march. The first walking trial was without a rucksack and the second set was executed with the All-Purpose Lightweight Individual Carrying Equipment (ALICE), an older version of the rucksack, and the third set was executed with the newer rucksack version, Modular Lightweight Load Carrying Equipment (MOLLE). In this experiment, the Inertial Measurement Unit (IMU) system, Dynaport was used to measure the ambulatory data of the subject. This experiment required subjects to walk continuously for 200 seconds with a 20kg rucksack, which simulates the real rucksack march training. To determine the dynamic stability of different load carriage and normal walking condition, Local Dynamic Stability (LDS) was calculated to quantify its stability. The results presented that comparing Maximum Lyapunov Exponent (LyE) of normal walking was significantly lower compared to ALICE (P=0.000007) and MOLLE (P=0.00003), however, between ALICE and MOLLE rucksack walking showed no significant difference (P=0.441). The five subjects showed significantly improved dynamic stability when walking without a rucksack in comparison with wearing the equipment. In conclusion, we discovered wearing a rucksack result in a significant (P < 0.0001) reduction in dynamic stability. 2021 2021-08-24 /pmc/articles/PMC9165734/ /pubmed/35663591 http://dx.doi.org/10.36001/ijphm.2021.v12i4.2778 Text en https://creativecommons.org/licenses/by/3.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Moon, Seong H. Frames, Christopher W. Soangra, Rahul Lockhart, Thurmon E. Effects of Rucksack Military Accessory on Gait Dynamic Stability |
title | Effects of Rucksack Military Accessory on Gait Dynamic Stability |
title_full | Effects of Rucksack Military Accessory on Gait Dynamic Stability |
title_fullStr | Effects of Rucksack Military Accessory on Gait Dynamic Stability |
title_full_unstemmed | Effects of Rucksack Military Accessory on Gait Dynamic Stability |
title_short | Effects of Rucksack Military Accessory on Gait Dynamic Stability |
title_sort | effects of rucksack military accessory on gait dynamic stability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165734/ https://www.ncbi.nlm.nih.gov/pubmed/35663591 http://dx.doi.org/10.36001/ijphm.2021.v12i4.2778 |
work_keys_str_mv | AT moonseongh effectsofrucksackmilitaryaccessoryongaitdynamicstability AT frameschristopherw effectsofrucksackmilitaryaccessoryongaitdynamicstability AT soangrarahul effectsofrucksackmilitaryaccessoryongaitdynamicstability AT lockhartthurmone effectsofrucksackmilitaryaccessoryongaitdynamicstability |