Cargando…

The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice

Understanding the mechanisms underlying ischemic brain injury is of importance to the goal of devising novel therapeutics for protection and/or recovery. Previous work in our laboratory and in others has shown that activation of cystine/glutamate antiporter, system x(c)(–) (Sx(c)(–)), facilitates ne...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yan, Hewett, Sandra J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165760/
https://www.ncbi.nlm.nih.gov/pubmed/35669109
http://dx.doi.org/10.3389/fncel.2022.821036
_version_ 1784720456629092352
author He, Yan
Hewett, Sandra J.
author_facet He, Yan
Hewett, Sandra J.
author_sort He, Yan
collection PubMed
description Understanding the mechanisms underlying ischemic brain injury is of importance to the goal of devising novel therapeutics for protection and/or recovery. Previous work in our laboratory and in others has shown that activation of cystine/glutamate antiporter, system x(c)(–) (Sx(c)(–)), facilitates neuronal injury in several in vitro models of energy deprivation. However, studies on the contribution of this antiporter to ischemic brain damage in vivo are more limited. Since embolic or thrombotic transient or permanent occlusion of a cerebral blood vessel eventually leads to brain infarction in most stroke cases, we evaluated the contribution of Sx(c)(–) to cerebral ischemic damage by comparing brain infarction between mice naturally null for SLC7a11 (SLC7a11(sut/sut) mice) – the gene the encodes for the substrate specific light chain for system x(c)(–) – with their wild type (SLC7a11( + ⁣/ +)) littermates following photothrombotic ischemic stroke of the middle cerebral artery (PTI) and permanent middle cerebral artery occlusion (pMCAo) rendered by cauterization. In the PTI model, we found a time-dependent reduction in cerebral blood flow that reached 50% from baseline in both genotypes 47–48 h post-illumination. Despite this, a remarkable reduction in incidence and total infarct volume of SLC7a11(sut/sut) mice was revealed 48 h following PTI as compared to SLC7a11(+/+) mice. No difference in injury markers and/or infarct volume was measured between genotypes when occlusion of the MCA was permanent, however. Present data demonstrate a model-dependent differential role for Sx(c)(–) in focal cerebral ischemic damage, further highlighting that ischemic severity activates heterogeneous biochemical events that lead to damage engendered by stroke.
format Online
Article
Text
id pubmed-9165760
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91657602022-06-05 The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice He, Yan Hewett, Sandra J. Front Cell Neurosci Neuroscience Understanding the mechanisms underlying ischemic brain injury is of importance to the goal of devising novel therapeutics for protection and/or recovery. Previous work in our laboratory and in others has shown that activation of cystine/glutamate antiporter, system x(c)(–) (Sx(c)(–)), facilitates neuronal injury in several in vitro models of energy deprivation. However, studies on the contribution of this antiporter to ischemic brain damage in vivo are more limited. Since embolic or thrombotic transient or permanent occlusion of a cerebral blood vessel eventually leads to brain infarction in most stroke cases, we evaluated the contribution of Sx(c)(–) to cerebral ischemic damage by comparing brain infarction between mice naturally null for SLC7a11 (SLC7a11(sut/sut) mice) – the gene the encodes for the substrate specific light chain for system x(c)(–) – with their wild type (SLC7a11( + ⁣/ +)) littermates following photothrombotic ischemic stroke of the middle cerebral artery (PTI) and permanent middle cerebral artery occlusion (pMCAo) rendered by cauterization. In the PTI model, we found a time-dependent reduction in cerebral blood flow that reached 50% from baseline in both genotypes 47–48 h post-illumination. Despite this, a remarkable reduction in incidence and total infarct volume of SLC7a11(sut/sut) mice was revealed 48 h following PTI as compared to SLC7a11(+/+) mice. No difference in injury markers and/or infarct volume was measured between genotypes when occlusion of the MCA was permanent, however. Present data demonstrate a model-dependent differential role for Sx(c)(–) in focal cerebral ischemic damage, further highlighting that ischemic severity activates heterogeneous biochemical events that lead to damage engendered by stroke. Frontiers Media S.A. 2022-05-09 /pmc/articles/PMC9165760/ /pubmed/35669109 http://dx.doi.org/10.3389/fncel.2022.821036 Text en Copyright © 2022 He and Hewett. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
He, Yan
Hewett, Sandra J.
The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice
title The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice
title_full The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice
title_fullStr The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice
title_full_unstemmed The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice
title_short The Cystine/Glutamate Antiporter, System x(c)(–), Contributes to Cortical Infarction After Moderate but Not Severe Focal Cerebral Ischemia in Mice
title_sort cystine/glutamate antiporter, system x(c)(–), contributes to cortical infarction after moderate but not severe focal cerebral ischemia in mice
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165760/
https://www.ncbi.nlm.nih.gov/pubmed/35669109
http://dx.doi.org/10.3389/fncel.2022.821036
work_keys_str_mv AT heyan thecystineglutamateantiportersystemxccontributestocorticalinfarctionaftermoderatebutnotseverefocalcerebralischemiainmice
AT hewettsandraj thecystineglutamateantiportersystemxccontributestocorticalinfarctionaftermoderatebutnotseverefocalcerebralischemiainmice
AT heyan cystineglutamateantiportersystemxccontributestocorticalinfarctionaftermoderatebutnotseverefocalcerebralischemiainmice
AT hewettsandraj cystineglutamateantiportersystemxccontributestocorticalinfarctionaftermoderatebutnotseverefocalcerebralischemiainmice