Cargando…
Deep Residual Convolutional Neural Networks for Brain–Computer Interface to Visualize Neural Processing of Hand Movements in the Human Brain
Concomitant with the development of deep learning, brain–computer interface (BCI) decoding technology has been rapidly evolving. Convolutional neural networks (CNNs), which are generally used as electroencephalography (EEG) classification models, are often deployed in BCI prototypes to improve the e...
Autores principales: | Fujiwara, Yosuke, Ushiba, Junichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165810/ https://www.ncbi.nlm.nih.gov/pubmed/35669388 http://dx.doi.org/10.3389/fncom.2022.882290 |
Ejemplares similares
-
De Novo Brain-Computer Interfacing Deforms Manifold of Populational Neural Activity Patterns in Human Cerebral Cortex
por: Iwama, Seitaro, et al.
Publicado: (2022) -
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Publicado: (2022) -
Brain-computer interface research: a state-of-the-art summary 5
por: Guger, Christoph, et al.
Publicado: (2017) -
Convolutional Neural Network with a Topographic Representation Module for EEG-Based Brain—Computer Interfaces
por: Liang, Xinbin, et al.
Publicado: (2023) -
Guiding visual attention in deep convolutional neural networks based on human eye movements
por: van Dyck, Leonard Elia, et al.
Publicado: (2022)