Cargando…
CI-SpliceAI—Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites
BACKGROUND: It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its complexity, our ability to predict which variants disrupt splicing is limited, meaning missed diagnoses for patients. The emergence of machine learning for targeted medicine holds great potential...
Autores principales: | Strauch, Yaron, Lord, Jenny, Niranjan, Mahesan, Baralle, Diana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165884/ https://www.ncbi.nlm.nih.gov/pubmed/35657932 http://dx.doi.org/10.1371/journal.pone.0269159 |
Ejemplares similares
-
SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation
por: de Sainte Agathe, Jean-Madeleine, et al.
Publicado: (2023) -
Performance Evaluation of SpliceAI for the Prediction of Splicing of NF1 Variants
por: Ha, Changhee, et al.
Publicado: (2021) -
SpliceAI-10k calculator for the prediction of pseudoexonization, intron retention, and exon deletion
por: Canson, Daffodil M, et al.
Publicado: (2023) -
Splicing in the Diagnosis of Rare Disease: Advances and Challenges
por: Lord, Jenny, et al.
Publicado: (2021) -
Alternative splicing regulation at tandem 3′ splice sites
por: Akerman, Martin, et al.
Publicado: (2006)