Cargando…
Representation learning in the artificial and biological neural networks underlying sensorimotor integration
The integration of deep learning and theories of reinforcement learning (RL) is a promising avenue to explore novel hypotheses on reward-based learning and decision-making in humans and other animals. Here, we trained deep RL agents and mice in the same sensorimotor task with high-dimensional state...
Autores principales: | Suhaimi, Ahmad, Lim, Amos W. H., Chia, Xin Wei, Li, Chunyue, Makino, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166289/ https://www.ncbi.nlm.nih.gov/pubmed/35658033 http://dx.doi.org/10.1126/sciadv.abn0984 |
Ejemplares similares
-
Neural representation of the sensorimotor speech–action-repository
por: Eckers, Cornelia, et al.
Publicado: (2013) -
Understanding implicit and explicit sensorimotor learning through neural dynamics
por: Deng, Xueqian, et al.
Publicado: (2022) -
Paradigm Shift in Sensorimotor Control Research and Brain Machine Interface Control: The Influence of Context on Sensorimotor Representations
por: Zhao, Yao, et al.
Publicado: (2018) -
Deontological Dilemma Response Tendencies and Sensorimotor Representations of Harm to Others
por: Christov-Moore, Leonardo, et al.
Publicado: (2017) -
Symmetry-Based Representations for Artificial and Biological General Intelligence
por: Higgins, Irina, et al.
Publicado: (2022)