Cargando…
dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD
OBJECTIVE: Achieving sufficient statistical power in a survival analysis usually requires large amounts of data from different sites. Sensitivity of individual-level data, ethical and practical considerations regarding data sharing across institutions could be a potential challenge for achieving thi...
Autores principales: | Banerjee, Soumya, Sofack, Ghislain N., Papakonstantinou, Thodoris, Avraam, Demetris, Burton, Paul, Zöller, Daniela, Bishop, Tom R. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166323/ https://www.ncbi.nlm.nih.gov/pubmed/35659747 http://dx.doi.org/10.1186/s13104-022-06085-1 |
Ejemplares similares
-
dsSurvival 2.0: privacy enhancing survival curves for survival models in the federated DataSHIELD analysis system
por: Banerjee, Soumya, et al.
Publicado: (2023) -
Privacy protected text analysis in DataSHIELD
por: Wilson, Rebecca, et al.
Publicado: (2017) -
Privacy protected graphical functionality in DataSHIELD
por: Avraam, Demetris, et al.
Publicado: (2017) -
dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system
por: Banerjee, Soumya, et al.
Publicado: (2022) -
Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD
por: Marcon, Yannick, et al.
Publicado: (2021)