Cargando…
Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review
BACKGROUND: Rehabilitation medicine is facing a new development phase thanks to a recent wave of rigorous clinical trials aimed at improving the scientific evidence of protocols. This phenomenon, combined with new trends in personalised medical therapies, is expected to change clinical practice dram...
Autores principales: | Campagnini, Silvia, Arienti, Chiara, Patrini, Michele, Liuzzi, Piergiuseppe, Mannini, Andrea, Carrozza, Maria Chiara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166382/ https://www.ncbi.nlm.nih.gov/pubmed/35659246 http://dx.doi.org/10.1186/s12984-022-01032-4 |
Ejemplares similares
-
Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution
por: Liuzzi, Piergiuseppe, et al.
Publicado: (2022) -
Cross-validation of predictive models for functional recovery after post-stroke rehabilitation
por: Campagnini, Silvia, et al.
Publicado: (2022) -
Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review
por: Campagnini, Silvia, et al.
Publicado: (2022) -
The methodology of a “living” COVID-19 registry development in a clinical context
por: Arienti, Chiara, et al.
Publicado: (2022) -
Mortality and characteristics of older people dying with COVID-19 in Lombardy nursing homes, Italy: An observational cohort study
por: Arienti, Chiara, et al.
Publicado: (2021)