Cargando…

Long-term observation after transplantation of cultured human corneal endothelial cells for corneal endothelial dysfunction

BACKGROUND: Corneal transplantation is the only way to treat serious corneal diseases caused by corneal endothelial dysfunction. However, the shortage of donor corneal tissues and human corneal endothelial cells (HCECs) remains a worldwide challenge. We cultivated HCECs by the use of a conditioned m...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Peng, Shen, Lin, Li, Yuan-Bin, Du, Li-Qun, Wu, Xin-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166479/
https://www.ncbi.nlm.nih.gov/pubmed/35659288
http://dx.doi.org/10.1186/s13287-022-02889-x
Descripción
Sumario:BACKGROUND: Corneal transplantation is the only way to treat serious corneal diseases caused by corneal endothelial dysfunction. However, the shortage of donor corneal tissues and human corneal endothelial cells (HCECs) remains a worldwide challenge. We cultivated HCECs by the use of a conditioned medium from orbital adipose-derived stem cells (OASC-CM) in vitro. Then the HCECs were used to treat animal corneal endothelial dysfunction models via cell transplantation. The purpose of this study was to conduct a long-term observation and evaluation after cell transplantation. METHODS: Orbital adipose-derived stem cells (OASCs) were isolated to prepare the conditioned medium (CM). HCECs were cultivated and expanded by the usage of the CM (CM-HCECs). Then, related corneal endothelial cell (CEC) markers were analyzed by immunofluorescence. The cell proliferation ability was also tested. CM-HCECs were then transplanted into monkey corneal endothelial dysfunction models by injection. We carried out a 24-month postoperative preclinical observation and verified the long-term effect by histological examination and transcriptome sequencing. RESULTS: CM-HCECs strongly expressed CEC-related markers and maintained polygonal cell morphology even after 10 passages. At 24 months after cell transplantation, there was a CEC density of more than 2400 cells per square millimeter (range, 2408–2685) in the experimental group. A corneal thickness (CT) of less than 550 μm (range, 490–510) was attained. Gene sequencing showed that the gene expression pattern of CM-HCECs was similar to that of transplanted cells and HCECs. CONCLUSIONS: Transplantation of CM-HCECs into monkey corneal endothelial dysfunction models resulted in a transparent cornea after 24 months. This research provided a promising prospect of cell-based therapy for corneal endothelial diseases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-022-02889-x.