Cargando…
A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic pro...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166533/ https://www.ncbi.nlm.nih.gov/pubmed/34633446 http://dx.doi.org/10.1093/brain/awab382 |
_version_ | 1784720625434099712 |
---|---|
author | van der Ende, Emma L Bron, Esther E Poos, Jackie M Jiskoot, Lize C Panman, Jessica L Papma, Janne M Meeter, Lieke H Dopper, Elise G P Wilke, Carlo Synofzik, Matthis Heller, Carolin Swift, Imogen J Sogorb-Esteve, Aitana Bouzigues, Arabella Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Graff, Caroline Laforce, Robert Galimberti, Daniela Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik Rowe, James B de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Ducharme, Simon Butler, Christopher R Gerhard, Alexander Levin, Johannes Danek, Adrian Otto, Markus Pijnenburg, Yolande A L Sorbi, Sandro Zetterberg, Henrik Niessen, Wiro J Rohrer, Jonathan D Klein, Stefan van Swieten, John C Venkatraghavan, Vikram Seelaar, Harro |
author_facet | van der Ende, Emma L Bron, Esther E Poos, Jackie M Jiskoot, Lize C Panman, Jessica L Papma, Janne M Meeter, Lieke H Dopper, Elise G P Wilke, Carlo Synofzik, Matthis Heller, Carolin Swift, Imogen J Sogorb-Esteve, Aitana Bouzigues, Arabella Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Graff, Caroline Laforce, Robert Galimberti, Daniela Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik Rowe, James B de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Ducharme, Simon Butler, Christopher R Gerhard, Alexander Levin, Johannes Danek, Adrian Otto, Markus Pijnenburg, Yolande A L Sorbi, Sandro Zetterberg, Henrik Niessen, Wiro J Rohrer, Jonathan D Klein, Stefan van Swieten, John C Venkatraghavan, Vikram Seelaar, Harro |
author_sort | van der Ende, Emma L |
collection | PubMed |
description | Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80–0.89) and 0.90 (0.86–0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75–0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model’s ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions. |
format | Online Article Text |
id | pubmed-9166533 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-91665332022-06-06 A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia van der Ende, Emma L Bron, Esther E Poos, Jackie M Jiskoot, Lize C Panman, Jessica L Papma, Janne M Meeter, Lieke H Dopper, Elise G P Wilke, Carlo Synofzik, Matthis Heller, Carolin Swift, Imogen J Sogorb-Esteve, Aitana Bouzigues, Arabella Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Graff, Caroline Laforce, Robert Galimberti, Daniela Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik Rowe, James B de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Ducharme, Simon Butler, Christopher R Gerhard, Alexander Levin, Johannes Danek, Adrian Otto, Markus Pijnenburg, Yolande A L Sorbi, Sandro Zetterberg, Henrik Niessen, Wiro J Rohrer, Jonathan D Klein, Stefan van Swieten, John C Venkatraghavan, Vikram Seelaar, Harro Brain Original Article Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80–0.89) and 0.90 (0.86–0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75–0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model’s ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions. Oxford University Press 2021-10-11 /pmc/articles/PMC9166533/ /pubmed/34633446 http://dx.doi.org/10.1093/brain/awab382 Text en © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Article van der Ende, Emma L Bron, Esther E Poos, Jackie M Jiskoot, Lize C Panman, Jessica L Papma, Janne M Meeter, Lieke H Dopper, Elise G P Wilke, Carlo Synofzik, Matthis Heller, Carolin Swift, Imogen J Sogorb-Esteve, Aitana Bouzigues, Arabella Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Graff, Caroline Laforce, Robert Galimberti, Daniela Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik Rowe, James B de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Ducharme, Simon Butler, Christopher R Gerhard, Alexander Levin, Johannes Danek, Adrian Otto, Markus Pijnenburg, Yolande A L Sorbi, Sandro Zetterberg, Henrik Niessen, Wiro J Rohrer, Jonathan D Klein, Stefan van Swieten, John C Venkatraghavan, Vikram Seelaar, Harro A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
title | A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
title_full | A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
title_fullStr | A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
title_full_unstemmed | A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
title_short | A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
title_sort | data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166533/ https://www.ncbi.nlm.nih.gov/pubmed/34633446 http://dx.doi.org/10.1093/brain/awab382 |
work_keys_str_mv | AT vanderendeemmal adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT bronesthere adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT poosjackiem adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT jiskootlizec adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT panmanjessical adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT papmajannem adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT meeterliekeh adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT dopperelisegp adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT wilkecarlo adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT synofzikmatthis adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT hellercarolin adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT swiftimogenj adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT sogorbesteveaitana adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT bouziguesarabella adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT borronibarbara adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT sanchezvalleraquel adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT morenofermin adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT graffcaroline adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT laforcerobert adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT galimbertidaniela adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT masellismario adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT tartagliamariacarmela adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT fingerelizabeth adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT vandenbergherik adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT rowejamesb adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT demendoncaalexandre adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT tagliavinifabrizio adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT santanaisabel adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT ducharmesimon adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT butlerchristopherr adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT gerhardalexander adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT levinjohannes adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT danekadrian adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT ottomarkus adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT pijnenburgyolandeal adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT sorbisandro adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT zetterberghenrik adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT niessenwiroj adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT rohrerjonathand adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT kleinstefan adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT vanswietenjohnc adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT venkatraghavanvikram adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT seelaarharro adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT adatadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT vanderendeemmal datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT bronesthere datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT poosjackiem datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT jiskootlizec datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT panmanjessical datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT papmajannem datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT meeterliekeh datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT dopperelisegp datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT wilkecarlo datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT synofzikmatthis datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT hellercarolin datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT swiftimogenj datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT sogorbesteveaitana datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT bouziguesarabella datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT borronibarbara datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT sanchezvalleraquel datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT morenofermin datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT graffcaroline datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT laforcerobert datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT galimbertidaniela datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT masellismario datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT tartagliamariacarmela datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT fingerelizabeth datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT vandenbergherik datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT rowejamesb datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT demendoncaalexandre datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT tagliavinifabrizio datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT santanaisabel datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT ducharmesimon datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT butlerchristopherr datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT gerhardalexander datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT levinjohannes datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT danekadrian datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT ottomarkus datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT pijnenburgyolandeal datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT sorbisandro datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT zetterberghenrik datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT niessenwiroj datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT rohrerjonathand datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT kleinstefan datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT vanswietenjohnc datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT venkatraghavanvikram datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT seelaarharro datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia AT datadrivendiseaseprogressionmodeloffluidbiomarkersingeneticfrontotemporaldementia |