Cargando…

N-heterocyclic carbene-stabilized metal nanoparticles within porous organic cages for catalytic application

Tuning the surface-embellishing ligands of metal nanoparticles (NPs) is a powerful strategy to modulate their morphology and surface electronic and functional features, impacting their catalytic activity and selectivity. In this work, we report the design and synthesis of a polytriazolium organic ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tong, Bai, Sha, Zhang, Le, Hahn, F Ekkehardt, Han, Ying-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166563/
https://www.ncbi.nlm.nih.gov/pubmed/35673537
http://dx.doi.org/10.1093/nsr/nwac067
Descripción
Sumario:Tuning the surface-embellishing ligands of metal nanoparticles (NPs) is a powerful strategy to modulate their morphology and surface electronic and functional features, impacting their catalytic activity and selectivity. In this work, we report the design and synthesis of a polytriazolium organic cage PIC-T, capable of stabilizing PdNPs within its discrete cavity. The obtained material (denoted Pd@PCC-T) is highly durable and monodispersed with narrow particle-size distribution of 2.06 ± 0.02 nm, exhibiting excellent catalytic performance and recyclability in the Sonogashira coupling and tandem reaction to synthesize benzofuran derivatives. Further investigation indicates that the modulation of N-heterocyclic carbene sites embedded in the organic cage has an impact on NPs’ catalytic efficiency, thus providing a novel methodology to design superior NP catalysts.