Cargando…
Study of the effect of intestinal immunity in neonatal piglets coinfected with porcine deltacoronavirus and porcine epidemic diarrhea virus
Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) have often been detected simultaneously in piglets with coronavirus diarrhea. However, the intestinal immune response to the interaction between circulating PDCoV and PEDV is unknown. Therefore, this study was conducted to i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166669/ https://www.ncbi.nlm.nih.gov/pubmed/35661915 http://dx.doi.org/10.1007/s00705-022-05461-3 |
Sumario: | Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) have often been detected simultaneously in piglets with coronavirus diarrhea. However, the intestinal immune response to the interaction between circulating PDCoV and PEDV is unknown. Therefore, this study was conducted to investigate the intestinal immunity of neonatal piglets that were exposed first to PDCoV and then to PEDV. The amounts and distribution of CD3(+) T lymphocytes, B lymphocytes, and goblet cells (GCs) in the small intestine were analyzed by immunohistochemistry and periodic acid–Schiff staining, respectively. The expression levels of pattern recognition receptors and downstream mediator cytokines were analyzed by qPCR and ELISA. The results showed that the numbers of GCs, CD3(+) T lymphocytes, and B lymphocytes in the duodenum and jejunum of the PDCoV + PEDV coinoculated piglets were increased compared with those of piglets inoculated with PEDV alone. The piglets in the PDCoV + PEDV group had significantly upregulated IFN-α and IFN-λ(1) compared with the PEDV single-inoculated piglets. These results suggest that PDCoV + PEDV-coinfected piglets can activate intestinal antiviral immunity more strongly than piglets infected with PEDV alone, which provides new insight into the pathogenesis mechanism of swine enteric coronavirus coinfection that may be used for vaccination in the future. |
---|