Cargando…
Variant-driven early warning via unsupervised machine learning analysis of spike protein mutations for COVID-19
Never before such a vast amount of data, including genome sequencing, has been collected for any viral pandemic than for the current case of COVID-19. This offers the possibility to trace the virus evolution and to assess the role mutations play in its spread within the population, in real time. To...
Autores principales: | de Hoffer, Adele, Vatani, Shahram, Cot, Corentin, Cacciapaglia, Giacomo, Chiusano, Maria Luisa, Cimarelli, Andrea, Conventi, Francesco, Giannini, Antonio, Hohenegger, Stefan, Sannino, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166699/ https://www.ncbi.nlm.nih.gov/pubmed/35661750 http://dx.doi.org/10.1038/s41598-022-12442-8 |
Ejemplares similares
-
Epidemiological theory of virus variants
por: Cacciapaglia, Giacomo, et al.
Publicado: (2022) -
Second wave COVID-19 pandemics in Europe: a temporal playbook
por: Cacciapaglia, Giacomo, et al.
Publicado: (2020) -
Mining Google and Apple mobility data: temporal anatomy for COVID-19 social distancing
por: Cot, Corentin, et al.
Publicado: (2021) -
Multiwave pandemic dynamics explained: how to tame the next wave of infectious diseases
por: Cacciapaglia, Giacomo, et al.
Publicado: (2021) -
Effective mathematical modelling of health passes during a pandemic
por: Hohenegger, Stefan, et al.
Publicado: (2022)