Cargando…
An improved typhoon simulation method based on Latin hypercube sampling method
In order to further improve the prediction accuracy of typhoon simulation method for extreme wind speed in typhoon prone areas, an improved typhoon simulation method is proposed by introducing the Latin hypercube sampling method into the traditional typhoon simulation method. In this paper, the impr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166701/ https://www.ncbi.nlm.nih.gov/pubmed/35661113 http://dx.doi.org/10.1038/s41598-022-13151-y |
Sumario: | In order to further improve the prediction accuracy of typhoon simulation method for extreme wind speed in typhoon prone areas, an improved typhoon simulation method is proposed by introducing the Latin hypercube sampling method into the traditional typhoon simulation method. In this paper, the improved typhoon simulation method is first given a detailed introduction. Then, this method is applied to the prediction of extreme wind speeds under various return periods in Hong Kong. To validate this method, two aspects of analysis is carried out, including correlation analysis among typhoon key parameters and prediction of extreme wind speeds under various return periods. The results show that the correlation coefficients among typhoon key parameters can be maintained satisfactorily with this improved typhoon simulation method. The results show that the improved typhoon simulation method can generate the correlations among all typhoon key parameters satisfactorily. Compared with the traditional typhoon simulation method, the improved typhoon simulation method has higher accuracy in predicting the typhoon extreme wind speed in Hong Kong, increasing by about 8% and 11% respectively at 200 m height and gradient height. |
---|