Cargando…
Transformer-Based Deep Neural Language Modeling for Construct-Specific Automatic Item Generation
Algorithmic automatic item generation can be used to obtain large quantities of cognitive items in the domains of knowledge and aptitude testing. However, conventional item models used by template-based automatic item generation techniques are not ideal for the creation of items for non-cognitive co...
Autores principales: | Hommel, Björn E., Wollang, Franz-Josef M., Kotova, Veronika, Zacher, Hannes, Schmukle, Stefan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166894/ https://www.ncbi.nlm.nih.gov/pubmed/34907497 http://dx.doi.org/10.1007/s11336-021-09823-9 |
Ejemplares similares
-
hapConstructor: automatic construction and testing of haplotypes in a Monte Carlo framework
por: Abo, Ryan, et al.
Publicado: (2008) -
Generalization of finetuned transformer language models to new clinical contexts
por: Xie, Kevin, et al.
Publicado: (2023) -
A transformation-based method for auditing the IS-A hierarchy of biomedical terminologies in the Unified Medical Language System
por: Zheng, Fengbo, et al.
Publicado: (2020) -
Expert-level sleep scoring with deep neural networks
por: Biswal, Siddharth, et al.
Publicado: (2018) -
The interactive reading task: Transformer-based automatic item generation
por: Attali, Yigal, et al.
Publicado: (2022)