Cargando…
Identification of Hub Genes Associated with Nonspecific Orbital Inflammation by Weighted Gene Coexpression Network Analysis
BACKGROUND: Nonspecific orbital inflammation is a common ophthalmopathy with a high prevalence among adult females. Yet, its molecular mechanisms behind are poorly understood. Regulation of gene expression probably plays an important role in this disease. Thus, we utilized gene coexpression networks...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166965/ https://www.ncbi.nlm.nih.gov/pubmed/35669499 http://dx.doi.org/10.1155/2022/7588084 |
Sumario: | BACKGROUND: Nonspecific orbital inflammation is a common ophthalmopathy with a high prevalence among adult females. Yet, its molecular mechanisms behind are poorly understood. Regulation of gene expression probably plays an important role in this disease. Thus, we utilized gene coexpression networks to identify key modules and hub genes involved in nonspecific orbital inflammation. METHODS: Data of gene expression in nonspecific orbital inflammation samples (n = 61) and healthy samples (n = 28) were obtained from the public Gene Expression Omnibus database. Afterward, differentially expressed genes were performed. Then, weighted correlation network analysis was done to define the key modules. Next, functional enrichment analysis was conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway in key modules. Finally, a protein-protein interaction network and Cytohubba plugin were used to screen hub genes. RESULTS: Differential expression of 716 genes was identified, among which 169 genes were upregulated and 547 genes were downregulated in the nonspecific orbital inflammation group. In weighted correlation network analysis, we clarified 2 key modules (MEturquoise and MEblue) that are likely to play key roles in nonspecific orbital inflammation. Functional enrichment analysis indicated that these genes are predominately involved in immune response and matrix homeostasis. In addition, among 2 key modules, there are 20 hub genes identified. CONCLUSION: With this new approach, we identified several genes that could be critical to pathologies of nonspecific orbital inflammation. These findings may contribute to further therapeutic target development. |
---|