Cargando…

MiR-205-5p Functions as a Tumor Suppressor in Gastric Cancer Cells through Downregulating FAM84B

MicroRNAs (miRNAs) participate in the formation of multiple diseases, including gastric cancer (GC), through modulating specific targets. Here, we explored the functions and regulatory mechanisms of miR-205-5p in GC. MiR-205-5p levels were detected in GC cells through qRT-PCR. Besides, the role of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xi, Zhang, Lei, Geng, JingBo, Chen, Zhong, Cui, XiaoPeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166972/
https://www.ncbi.nlm.nih.gov/pubmed/35669244
http://dx.doi.org/10.1155/2022/8267891
Descripción
Sumario:MicroRNAs (miRNAs) participate in the formation of multiple diseases, including gastric cancer (GC), through modulating specific targets. Here, we explored the functions and regulatory mechanisms of miR-205-5p in GC. MiR-205-5p levels were detected in GC cells through qRT-PCR. Besides, the role of miR-205-5p in cell proliferation, cell apoptosis, cell cycle, cell invasion, and metastasis was assessed through CCK-8 assay, colony formation, flow cytometry, scratch assay, transwell, and western blot. Moreover, the Starbase website was used to predict the target gene of miR-205-5p, further verified by a dual-luciferase reporter assay. Furthermore, the functional effects of the family with sequence similarity 84 member B (FAM84B) on GC mediated by miR-205-5p upregulation were further investigated. MiR-205-5p expression was decreased in GC cells. Upregulation of miR-205-5p inhibited cell proliferation and metastasis and induced apoptosis and cycle arrest of GC cells. Moreover, FAM84B was predicted and confirmed as a target of miR-205-5p and negatively related to miR-205-5p. Mechanically, FAM84B overexpression partially rescued the functional effects of miR-205-5p upregulation on GC cell progression. This study suggests the potential of miR-205-5p/FAM84B as novel targets for the treatment of GC.