Cargando…

Identification Method of Citrus Aurantium Diseases and Pests Based on Deep Convolutional Neural Network

The traditional identification methods of Citrus aurantium diseases and pests are prone to convergence during the running process, resulting in low accuracy of identification. To this end, this study reviews the newest methods for the identification of Citrus aurantium diseases and pests based on a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yuke, Xu, Jin, Zhang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166991/
https://www.ncbi.nlm.nih.gov/pubmed/35669669
http://dx.doi.org/10.1155/2022/7012399
Descripción
Sumario:The traditional identification methods of Citrus aurantium diseases and pests are prone to convergence during the running process, resulting in low accuracy of identification. To this end, this study reviews the newest methods for the identification of Citrus aurantium diseases and pests based on a deep convolutional neural network (DCNN). The initial images of Citrus aurantium leaves are collected by hardware equipment and then preprocessed using the techniques of cropping, enhancement, and morphological transformation. By using the neural network to divide the disease spots of Citrus aurantium images, accurate recognition results are obtained through feature matching. The comparative experimental results show that, compared with the traditional recognition method, the recognition rate of the proposed method has increased by about 11.9%, indicating its better performance. The proposed method can overcome the interference of the external environment to a certain extent and can provide reference data for the prevention and control of Citrus aurantium diseases and pests.