Cargando…
Local Well-Posedness to the Cauchy Problem for an Equation of the Nagumo Type
In this paper, we show the local well-posedness for the Cauchy problem for the equation of the Nagumo type in this equation (1) in the Sobolev spaces H(s)(ℝ). If D > 0, the local well-posedness is given for s > 1/2 and for s > 3/2 if D=0.
Autores principales: | Lizarazo, Vladimir, De la cruz, Richard, Lizarazo, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167108/ https://www.ncbi.nlm.nih.gov/pubmed/35668869 http://dx.doi.org/10.1155/2022/5891265 |
Ejemplares similares
-
Hyperbolic systems with analytic coefficients: well-posedness of the Cauchy problem
por: Nishitani, Tatsuo
Publicado: (2014) -
Well-posedness of the Cauchy problem for n × n systems of convation laws
por: Bressan, Alberto, et al.
Publicado: (2000) -
Well-posedness of parabolic difference equations
por: Ashyralyev, A, et al.
Publicado: (1994) -
Well-posedness of the Dirichlet Problem for the Nonlinear Diffusion Equation in Non-smooth Domains
por: Abdulla, U G
Publicado: (2000) -
Determinism, well-posedness, and applications of the ultrahyperbolic wave equation in spacekime
por: Wang, Yuxin, et al.
Publicado: (2022)