Cargando…

Computed Tomography Imaging under Artificial Intelligence Reconstruction Algorithm Used in Recovery of Sports Injury of the Knee Anterior Cruciate Ligament

This study aimed to analyze the influence of artificial intelligence (AI) reconstruction algorithm on computed tomography (CT) images and the application of CT image analysis in the recovery of knee anterior cruciate ligament (ACL) sports injuries. A total of 90 patients with knee trauma were select...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Heng, Zheng, Haiming, Deng, Ren, Luo, Kaiwen, Duan, Shukai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167137/
https://www.ncbi.nlm.nih.gov/pubmed/35685654
http://dx.doi.org/10.1155/2022/1199841
Descripción
Sumario:This study aimed to analyze the influence of artificial intelligence (AI) reconstruction algorithm on computed tomography (CT) images and the application of CT image analysis in the recovery of knee anterior cruciate ligament (ACL) sports injuries. A total of 90 patients with knee trauma were selected for enhanced CT scanning and randomly divided into three groups. Group A used the filtered back projection (FBP) reconstruction algorithm, and the tube voltage was set to 120 kV during CT scanning. Group B used the iDose4 reconstruction algorithm, and the tube voltage was set to 120 kV during CT scanning. In group C, the iDose4 reconstruction algorithm was used, and the tube voltage was set to 100 kV during CT scanning. The noise, signal-to-noise ratio (SNR), carrier-to-noise ratio (CNR), CT dose index volume (CTDI), dose length product (DLP), and effective radiation dose (ED) of the three groups of CT images were compared. The results showed that the noise of groups B and C was smaller than that of group A (P < 0.05), and the SNR and CNR of groups B and C were higher than those of group A. The images of patients in group A with the FBP reconstruction algorithm were noisy, and the boundaries were not clear. The noise of the images obtained by the iDose4 reconstruction algorithm in groups B and C was improved, and the image resolution was also higher. The agreement between arthroscopy and CT scan results was 96%. Therefore, the iterative reconstruction algorithm of iDose4 can improve the image quality. It was of important value in the diagnosis of knee ACL sports injury.