Cargando…

Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis

BACKGROUND: In ulcerative colitis (UC), the molecular mechanisms that drive disease development and patient response to therapy are not well understood. A significant proportion of patients with UC fail to respond adequately to biologic therapy. Therefore, there is an unmet need for biomarkers that...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Amrinder, Fenton, Christopher G., Anderssen, Endre, Paulssen, Ruth H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167201/
https://www.ncbi.nlm.nih.gov/pubmed/35543875
http://dx.doi.org/10.1007/s00384-022-04176-w
_version_ 1784720776635613184
author Singh, Amrinder
Fenton, Christopher G.
Anderssen, Endre
Paulssen, Ruth H.
author_facet Singh, Amrinder
Fenton, Christopher G.
Anderssen, Endre
Paulssen, Ruth H.
author_sort Singh, Amrinder
collection PubMed
description BACKGROUND: In ulcerative colitis (UC), the molecular mechanisms that drive disease development and patient response to therapy are not well understood. A significant proportion of patients with UC fail to respond adequately to biologic therapy. Therefore, there is an unmet need for biomarkers that can predict patients’ responsiveness to the available UC therapies as well as ascertain the most effective individualised therapy. Our study focused on identifying predictive signalling pathways that predict anti-integrin therapy response in patients with UC. METHODS: We retrieved and pre-processed two publicly accessible gene expression datasets (GSE73661 and GSE72819) of UC patients treated with anti-integrin therapies: (1) 12 non-IBD controls and 41 UC patients treated with Vedolizumab therapy, and (2) 70 samples with 58 non-responder and 12 responder UC patient samples treated with Etrolizumab therapy without non-IBD controls. We used a diffusion-based signalling model which is mainly focused on the T-cell receptor signalling network. The diffusion model uses network connectivity between receptors and transcription factors. RESULTS: The network diffusion scores were able to separate VDZ responder and non-responder patients before treatment better than the original gene expression. On both anti-integrin treatment datasets, the diffusion model demonstrated high predictive performance for discriminating responders from non-responders in comparison with ‘nnet’. We have found 48 receptor-TF pairs identified as the best predictors for VDZ therapy response with AUC ≥ 0.76. Among these receptor-TF predictors pairs, FFAR2-NRF1, FFAR2-RELB, FFAR2-EGR1, and FFAR2-NFKB1 are the top best predictors. For Etrolizumab, we have identified 40 best receptor-TF pairs and CD40-NFKB2 as the best predictor receptor-TF pair (AUC = 0.72). We also identified subnetworks that highlight the network interactions, connecting receptors and transcription factors involved in cytokine and fatty acid signalling. The findings suggest that anti-integrin therapy responses in cytokine and fatty acid signalling can stratify UC patient subgroups. CONCLUSIONS: We identified signalling pathways that may predict the efficacy of anti-integrin therapy in UC patients and personalised therapy alternatives. Our results may lead to the advancement of a promising clinical decision-making tool for the stratification of UC patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00384-022-04176-w.
format Online
Article
Text
id pubmed-9167201
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-91672012022-06-06 Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis Singh, Amrinder Fenton, Christopher G. Anderssen, Endre Paulssen, Ruth H. Int J Colorectal Dis Original Article BACKGROUND: In ulcerative colitis (UC), the molecular mechanisms that drive disease development and patient response to therapy are not well understood. A significant proportion of patients with UC fail to respond adequately to biologic therapy. Therefore, there is an unmet need for biomarkers that can predict patients’ responsiveness to the available UC therapies as well as ascertain the most effective individualised therapy. Our study focused on identifying predictive signalling pathways that predict anti-integrin therapy response in patients with UC. METHODS: We retrieved and pre-processed two publicly accessible gene expression datasets (GSE73661 and GSE72819) of UC patients treated with anti-integrin therapies: (1) 12 non-IBD controls and 41 UC patients treated with Vedolizumab therapy, and (2) 70 samples with 58 non-responder and 12 responder UC patient samples treated with Etrolizumab therapy without non-IBD controls. We used a diffusion-based signalling model which is mainly focused on the T-cell receptor signalling network. The diffusion model uses network connectivity between receptors and transcription factors. RESULTS: The network diffusion scores were able to separate VDZ responder and non-responder patients before treatment better than the original gene expression. On both anti-integrin treatment datasets, the diffusion model demonstrated high predictive performance for discriminating responders from non-responders in comparison with ‘nnet’. We have found 48 receptor-TF pairs identified as the best predictors for VDZ therapy response with AUC ≥ 0.76. Among these receptor-TF predictors pairs, FFAR2-NRF1, FFAR2-RELB, FFAR2-EGR1, and FFAR2-NFKB1 are the top best predictors. For Etrolizumab, we have identified 40 best receptor-TF pairs and CD40-NFKB2 as the best predictor receptor-TF pair (AUC = 0.72). We also identified subnetworks that highlight the network interactions, connecting receptors and transcription factors involved in cytokine and fatty acid signalling. The findings suggest that anti-integrin therapy responses in cytokine and fatty acid signalling can stratify UC patient subgroups. CONCLUSIONS: We identified signalling pathways that may predict the efficacy of anti-integrin therapy in UC patients and personalised therapy alternatives. Our results may lead to the advancement of a promising clinical decision-making tool for the stratification of UC patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00384-022-04176-w. Springer Berlin Heidelberg 2022-05-11 2022 /pmc/articles/PMC9167201/ /pubmed/35543875 http://dx.doi.org/10.1007/s00384-022-04176-w Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Singh, Amrinder
Fenton, Christopher G.
Anderssen, Endre
Paulssen, Ruth H.
Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis
title Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis
title_full Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis
title_fullStr Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis
title_full_unstemmed Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis
title_short Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis
title_sort identifying predictive signalling networks for vedolizumab response in ulcerative colitis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167201/
https://www.ncbi.nlm.nih.gov/pubmed/35543875
http://dx.doi.org/10.1007/s00384-022-04176-w
work_keys_str_mv AT singhamrinder identifyingpredictivesignallingnetworksforvedolizumabresponseinulcerativecolitis
AT fentonchristopherg identifyingpredictivesignallingnetworksforvedolizumabresponseinulcerativecolitis
AT anderssenendre identifyingpredictivesignallingnetworksforvedolizumabresponseinulcerativecolitis
AT paulssenruthh identifyingpredictivesignallingnetworksforvedolizumabresponseinulcerativecolitis