Cargando…
Predicting persistent central serous chorioretinopathy using multiple optical coherence tomographic images by deep learning
We sought to predict whether central serous chorioretinopathy (CSC) will persist after 6 months using multiple optical coherence tomography (OCT) images by deep convolutional neural network (CNN). This was a multicenter, retrospective, cohort study. Multiple OCT images, including B-scan and en face...
Autores principales: | Jee, Donghyun, Yoon, Ji Hyun, Ra, Ho, Kwon, Jin-woo, Baek, Jiwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167285/ https://www.ncbi.nlm.nih.gov/pubmed/35661150 http://dx.doi.org/10.1038/s41598-022-13473-x |
Ejemplares similares
-
Optical Coherence Tomography Angiography in Central Serous Chorioretinopathy
por: Costanzo, Eliana, et al.
Publicado: (2015) -
Effect of Acetazolamide on Choroidal Morphology in Central Serous Chorioretinopathy
por: Kwak, Jae Hyuck, et al.
Publicado: (2019) -
Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy
por: Yoon, Jeewoo, et al.
Publicado: (2020) -
Assessing central serous chorioretinopathy with deep learning and multiple optical coherence tomography images
por: Ko, Junseo, et al.
Publicado: (2022) -
Comparison of the optical coherence tomographic characters between acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy
por: Lin, Dusheng, et al.
Publicado: (2014)