Cargando…

Forecasting induced seismicity in Oklahoma using machine learning methods

Oklahoma earthquakes in the past decade have been mostly associated with wastewater injection. Here we use a machine learning technique—the Random Forest to forecast induced seismicity rate in Oklahoma based on injection-related parameters. We split the data into training (2011.01–2015.05) and test...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Yan, Chen, Ting, Ma, Xiaofei, Chen, Xiaowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167295/
https://www.ncbi.nlm.nih.gov/pubmed/35661805
http://dx.doi.org/10.1038/s41598-022-13435-3
Descripción
Sumario:Oklahoma earthquakes in the past decade have been mostly associated with wastewater injection. Here we use a machine learning technique—the Random Forest to forecast induced seismicity rate in Oklahoma based on injection-related parameters. We split the data into training (2011.01–2015.05) and test (2015.06–2020.12) periods. The model forecasts seismicity rate during the test period based on input features, including operational parameters (injection rate and pressure), geological information (depth to basement), and modeled pore pressure and poroelastic stress. The results show overall good match with observed seismicity rate (adjusted [Formula: see text] of 0.75). The model shows that pore pressure rate and poroelastic stressing rates are the two most important features in forecasting. The absolute values of pore pressure and poroelastic stress, and the injection rate itself, are less important than the stressing rates. These findings further emphasize that temporal changes of stressing rates would lead to significant changes in seismicity rates.