Cargando…
A machine learning-driven spatio-temporal vulnerability appraisal based on socio-economic data for COVID-19 impact prevention in the U.S. counties
A mature and hybrid machine-learning model is verified by mature empirical analysis to measure county-level COVID-19 vulnerability and track the impact of the imposition of pandemic control policies in the U.S. A total of 30 county-level social, economic, and medical variables and a timeline of the...
Autores principales: | Moosazadeh, Mohammad, Ifaei, Pouya, Tayerani Charmchi, Amir Saman, Asadi, Somayeh, Yoo, ChangKyoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167466/ https://www.ncbi.nlm.nih.gov/pubmed/35692599 http://dx.doi.org/10.1016/j.scs.2022.103990 |
Ejemplares similares
-
Early warning of vulnerable counties in a pandemic using socio-economic variables
por: Ruck, Damian J., et al.
Publicado: (2021) -
Spatio-Temporal Pattern and Socio-Economic Factors of Bacillary Dysentery at County Level in Sichuan Province, China
por: Ma, Yue, et al.
Publicado: (2015) -
Socio-Economic Status and Language Development in Hearing Loss: A Critical Appraisal
por: Binos, Paris, et al.
Publicado: (2023) -
County-level socio-economic disparities in COVID-19 mortality in the USA
por: Dukhovnov, Denys, et al.
Publicado: (2021) -
Climate and socio-economic factors drive the spatio-temporal dynamics of HFRS in Northeastern China
por: Wang, Yanding, et al.
Publicado: (2022)