Cargando…

The study of microbial diversity and volatile compounds in Tartary buckwheat sourdoughs

Microorganisms play an essential role in forming volatile compounds in traditional staple products. Tartary buckwheat, as a medicinal and food material, has high nutritional value but its development and utilization are seriously restricted due to its poor flavor. In this study, 16S rRNA and ITS rRN...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yiming, She, Xuanming, Zhu, Siyi, Zhou, Xiaoli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167693/
https://www.ncbi.nlm.nih.gov/pubmed/35677194
http://dx.doi.org/10.1016/j.fochx.2022.100353
Descripción
Sumario:Microorganisms play an essential role in forming volatile compounds in traditional staple products. Tartary buckwheat, as a medicinal and food material, has high nutritional value but its development and utilization are seriously restricted due to its poor flavor. In this study, 16S rRNA and ITS rRNA sequencing were used to analyze the microbial diversity of Tartary buckwheat sourdoughs, while HS-SPME-GC/MS was used to identify volatile compounds during fermentation. The results showed that Lactococcus and Weissella were the dominant bacterial genus. Wickerhamomyces, Penicillium, and Aspergillus were the main fungal genera in the Tartary buckwheat sourdoughs. And the main volatile compounds in Tartary buckwheat sourdough were pyrazine compounds. After 12 h of fermentation, a large amount of alcohol and esters were produced, which endowed the sourdough with a good flavor. This suggests that sourdough fermentation could significantly improve the flavor of Tartary buckwheat.