Cargando…
SETD2: from chromatin modifier to multipronged regulator of the genome and beyond
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzy...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167812/ https://www.ncbi.nlm.nih.gov/pubmed/35661267 http://dx.doi.org/10.1007/s00018-022-04352-9 |
_version_ | 1784720860430467072 |
---|---|
author | Molenaar, Thom M. van Leeuwen, Fred |
author_facet | Molenaar, Thom M. van Leeuwen, Fred |
author_sort | Molenaar, Thom M. |
collection | PubMed |
description | Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease. |
format | Online Article Text |
id | pubmed-9167812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-91678122022-06-07 SETD2: from chromatin modifier to multipronged regulator of the genome and beyond Molenaar, Thom M. van Leeuwen, Fred Cell Mol Life Sci Review Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease. Springer International Publishing 2022-06-06 2022 /pmc/articles/PMC9167812/ /pubmed/35661267 http://dx.doi.org/10.1007/s00018-022-04352-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Molenaar, Thom M. van Leeuwen, Fred SETD2: from chromatin modifier to multipronged regulator of the genome and beyond |
title | SETD2: from chromatin modifier to multipronged regulator of the genome and beyond |
title_full | SETD2: from chromatin modifier to multipronged regulator of the genome and beyond |
title_fullStr | SETD2: from chromatin modifier to multipronged regulator of the genome and beyond |
title_full_unstemmed | SETD2: from chromatin modifier to multipronged regulator of the genome and beyond |
title_short | SETD2: from chromatin modifier to multipronged regulator of the genome and beyond |
title_sort | setd2: from chromatin modifier to multipronged regulator of the genome and beyond |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167812/ https://www.ncbi.nlm.nih.gov/pubmed/35661267 http://dx.doi.org/10.1007/s00018-022-04352-9 |
work_keys_str_mv | AT molenaarthomm setd2fromchromatinmodifiertomultiprongedregulatorofthegenomeandbeyond AT vanleeuwenfred setd2fromchromatinmodifiertomultiprongedregulatorofthegenomeandbeyond |