Cargando…
A Process Mining Pipeline to Characterize COVID-19 Patients' Trajectories and Identify Relevant Temporal Phenotypes From EHR Data
The impact of the COVID-19 pandemic involved the disruption of the processes of care and the need for immediately effective re-organizational procedures. In the context of digital health, it is of paramount importance to determine how a specific patients' population reflects into the healthcare...
Autores principales: | Dagliati, Arianna, Gatta, Roberto, Malovini, Alberto, Tibollo, Valentina, Sacchi, Lucia, Cascini, Fidelia, Chiovato, Luca, Bellazzi, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168006/ https://www.ncbi.nlm.nih.gov/pubmed/35677768 http://dx.doi.org/10.3389/fpubh.2022.815674 |
Ejemplares similares
-
Health informatics and EHR to support clinical research in the COVID-19 pandemic: an overview
por: Dagliati, Arianna, et al.
Publicado: (2021) -
An ICT infrastructure to integrate clinical and molecular data in oncology research
por: Segagni, Daniele, et al.
Publicado: (2012) -
Using topological data analysis and pseudo time series to infer temporal phenotypes from electronic health records
por: Dagliati, Arianna, et al.
Publicado: (2020) -
Patient-Generated Health Data Integration and Advanced Analytics for Diabetes Management: The AID-GM Platform
por: Salvi, Elisa, et al.
Publicado: (2019) -
Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools
por: Nicora, Giovanna, et al.
Publicado: (2020)