Cargando…
Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things
Recently, the 6G-enabled Internet of Medical Things (IoMT) has played a key role in the development of functional health systems due to the massive data generated daily from the hospitals. Therefore, the automatic detection and prediction of future risks such as pneumonia and retinal diseases are st...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168094/ https://www.ncbi.nlm.nih.gov/pubmed/35676950 http://dx.doi.org/10.1155/2022/5830766 |
_version_ | 1784720924241559552 |
---|---|
author | Abd Elaziz, Mohamed Mabrouk, Alhassan Dahou, Abdelghani Chelloug, Samia Allaoua |
author_facet | Abd Elaziz, Mohamed Mabrouk, Alhassan Dahou, Abdelghani Chelloug, Samia Allaoua |
author_sort | Abd Elaziz, Mohamed |
collection | PubMed |
description | Recently, the 6G-enabled Internet of Medical Things (IoMT) has played a key role in the development of functional health systems due to the massive data generated daily from the hospitals. Therefore, the automatic detection and prediction of future risks such as pneumonia and retinal diseases are still under research and study. However, traditional approaches did not yield good results for accurate diagnosis. In this paper, a robust 6G-enabled IoMT framework is proposed for medical image classification with an ensemble learning (EL)-based model. EL is achieved using MobileNet and DenseNet architecture as a feature extraction backbone. In addition, the developed framework uses a modified honey badger algorithm (HBA) based on Levy flight (LFHBA) as a feature selection method that aims to remove the irrelevant features from those extracted features using the EL model. For evaluation of the performance of the proposed framework, the chest X-ray (CXR) dataset and the optical coherence tomography (OCT) dataset were employed. The accuracy of our technique was 87.10% on the CXR dataset and 94.32% on OCT dataset—both very good results. Compared to other current methods, the proposed method is more accurate and efficient than other well-known and popular algorithms. |
format | Online Article Text |
id | pubmed-9168094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-91680942022-06-07 Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things Abd Elaziz, Mohamed Mabrouk, Alhassan Dahou, Abdelghani Chelloug, Samia Allaoua Comput Intell Neurosci Research Article Recently, the 6G-enabled Internet of Medical Things (IoMT) has played a key role in the development of functional health systems due to the massive data generated daily from the hospitals. Therefore, the automatic detection and prediction of future risks such as pneumonia and retinal diseases are still under research and study. However, traditional approaches did not yield good results for accurate diagnosis. In this paper, a robust 6G-enabled IoMT framework is proposed for medical image classification with an ensemble learning (EL)-based model. EL is achieved using MobileNet and DenseNet architecture as a feature extraction backbone. In addition, the developed framework uses a modified honey badger algorithm (HBA) based on Levy flight (LFHBA) as a feature selection method that aims to remove the irrelevant features from those extracted features using the EL model. For evaluation of the performance of the proposed framework, the chest X-ray (CXR) dataset and the optical coherence tomography (OCT) dataset were employed. The accuracy of our technique was 87.10% on the CXR dataset and 94.32% on OCT dataset—both very good results. Compared to other current methods, the proposed method is more accurate and efficient than other well-known and popular algorithms. Hindawi 2022-05-29 /pmc/articles/PMC9168094/ /pubmed/35676950 http://dx.doi.org/10.1155/2022/5830766 Text en Copyright © 2022 Mohamed Abd Elaziz et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Abd Elaziz, Mohamed Mabrouk, Alhassan Dahou, Abdelghani Chelloug, Samia Allaoua Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things |
title | Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things |
title_full | Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things |
title_fullStr | Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things |
title_full_unstemmed | Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things |
title_short | Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things |
title_sort | medical image classification utilizing ensemble learning and levy flight-based honey badger algorithm on 6g-enabled internet of things |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168094/ https://www.ncbi.nlm.nih.gov/pubmed/35676950 http://dx.doi.org/10.1155/2022/5830766 |
work_keys_str_mv | AT abdelazizmohamed medicalimageclassificationutilizingensemblelearningandlevyflightbasedhoneybadgeralgorithmon6genabledinternetofthings AT mabroukalhassan medicalimageclassificationutilizingensemblelearningandlevyflightbasedhoneybadgeralgorithmon6genabledinternetofthings AT dahouabdelghani medicalimageclassificationutilizingensemblelearningandlevyflightbasedhoneybadgeralgorithmon6genabledinternetofthings AT chellougsamiaallaoua medicalimageclassificationutilizingensemblelearningandlevyflightbasedhoneybadgeralgorithmon6genabledinternetofthings |