Cargando…

Quantum Decoherence Technique for Two Two-level Interacting Atomic Engineering in Dissipative Field

In order to improve the in-depth understanding and research on the dissipative field of atomic engineering, the research object of this paper is the dissipative field of atomic engineering. Through the engineering of two two-level interacting atoms as the background, an in-depth study of two two-lev...

Descripción completa

Detalles Bibliográficos
Autor principal: Shu, Pengli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168109/
https://www.ncbi.nlm.nih.gov/pubmed/35676966
http://dx.doi.org/10.1155/2022/7987716
Descripción
Sumario:In order to improve the in-depth understanding and research on the dissipative field of atomic engineering, the research object of this paper is the dissipative field of atomic engineering. Through the engineering of two two-level interacting atoms as the background, an in-depth study of two two-level atoms is carried out, so the decoherence factor of two two-level atoms is obtained. In this paper, the numerical simulation calculation experiment of the dissipative field of atomic engineering is carried out, and the evolution of the quantum coherent oscillation of the dissipative field to the quantum decoherence is discussed. The results indicate that the dissipation coefficient and strength of the atom-light field interaction not only affect the oscillation of the quantum coherent evolution of atomic states but also the periodicity of the evolution. All preliminary results throw light on the nature of two-level interacting atoms in the dissipative field of atomic engineering, which also provides a reference value for related researchers.