Cargando…
Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multipara...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Biomedical
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168440/ https://www.ncbi.nlm.nih.gov/pubmed/35654493 http://dx.doi.org/10.1016/j.jacc.2022.03.375 |
_version_ | 1784721009381736448 |
---|---|
author | Tayal, Upasana Verdonschot, Job A.J. Hazebroek, Mark R. Howard, James Gregson, John Newsome, Simon Gulati, Ankur Pua, Chee Jian Halliday, Brian P. Lota, Amrit S. Buchan, Rachel J. Whiffin, Nicola Kanapeckaite, Lina Baruah, Resham Jarman, Julian W.E. O’Regan, Declan P. Barton, Paul J.R. Ware, James S. Pennell, Dudley J. Adriaans, Bouke P. Bekkers, Sebastiaan C.A.M. Donovan, Jackie Frenneaux, Michael Cooper, Leslie T. Januzzi, James L. Cleland, John G.F. Cook, Stuart A. Deo, Rahul C. Heymans, Stephane R.B. Prasad, Sanjay K. |
author_facet | Tayal, Upasana Verdonschot, Job A.J. Hazebroek, Mark R. Howard, James Gregson, John Newsome, Simon Gulati, Ankur Pua, Chee Jian Halliday, Brian P. Lota, Amrit S. Buchan, Rachel J. Whiffin, Nicola Kanapeckaite, Lina Baruah, Resham Jarman, Julian W.E. O’Regan, Declan P. Barton, Paul J.R. Ware, James S. Pennell, Dudley J. Adriaans, Bouke P. Bekkers, Sebastiaan C.A.M. Donovan, Jackie Frenneaux, Michael Cooper, Leslie T. Januzzi, James L. Cleland, John G.F. Cook, Stuart A. Deo, Rahul C. Heymans, Stephane R.B. Prasad, Sanjay K. |
author_sort | Tayal, Upasana |
collection | PubMed |
description | BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multiparametric data for improved patient stratification. METHODS: Longitudinal, observational UK-derivation (n = 426; median age 54 years; 67% men) and Dutch-validation (n = 239; median age 56 years; 64% men) cohorts of DCM patients (enrolled 2009-2016) with clinical, genetic, cardiovascular magnetic resonance, and proteomic assessments. Machine learning with profile regression identified novel disease subtypes. Penalized multinomial logistic regression was used for validation. Nested Cox models compared novel groupings to conventional risk measures. Primary composite outcome was cardiovascular death, heart failure, or arrhythmia events (median follow-up 4 years). RESULTS: In total, 3 novel DCM subtypes were identified: profibrotic metabolic, mild nonfibrotic, and biventricular impairment. Prognosis differed between subtypes in both the derivation (P < 0.0001) and validation cohorts. The novel profibrotic metabolic subtype had more diabetes, universal myocardial fibrosis, preserved right ventricular function, and elevated creatinine. For clinical application, 5 variables were sufficient for classification (left and right ventricular end-systolic volumes, left atrial volume, myocardial fibrosis, and creatinine). Adding the novel DCM subtype improved the C-statistic from 0.60 to 0.76. Interleukin-4 receptor-alpha was identified as a novel prognostic biomarker in derivation (HR: 3.6; 95% CI: 1.9-6.5; P = 0.00002) and validation cohorts (HR: 1.94; 95% CI: 1.3-2.8; P = 0.00005). CONCLUSIONS: Three reproducible, mechanistically distinct DCM subtypes were identified using widely available clinical and biological data, adding prognostic value to traditional risk models. They may improve patient selection for novel interventions, thereby enabling precision medicine. |
format | Online Article Text |
id | pubmed-9168440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier Biomedical |
record_format | MEDLINE/PubMed |
spelling | pubmed-91684402022-06-14 Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data Tayal, Upasana Verdonschot, Job A.J. Hazebroek, Mark R. Howard, James Gregson, John Newsome, Simon Gulati, Ankur Pua, Chee Jian Halliday, Brian P. Lota, Amrit S. Buchan, Rachel J. Whiffin, Nicola Kanapeckaite, Lina Baruah, Resham Jarman, Julian W.E. O’Regan, Declan P. Barton, Paul J.R. Ware, James S. Pennell, Dudley J. Adriaans, Bouke P. Bekkers, Sebastiaan C.A.M. Donovan, Jackie Frenneaux, Michael Cooper, Leslie T. Januzzi, James L. Cleland, John G.F. Cook, Stuart A. Deo, Rahul C. Heymans, Stephane R.B. Prasad, Sanjay K. J Am Coll Cardiol Original Investigation BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multiparametric data for improved patient stratification. METHODS: Longitudinal, observational UK-derivation (n = 426; median age 54 years; 67% men) and Dutch-validation (n = 239; median age 56 years; 64% men) cohorts of DCM patients (enrolled 2009-2016) with clinical, genetic, cardiovascular magnetic resonance, and proteomic assessments. Machine learning with profile regression identified novel disease subtypes. Penalized multinomial logistic regression was used for validation. Nested Cox models compared novel groupings to conventional risk measures. Primary composite outcome was cardiovascular death, heart failure, or arrhythmia events (median follow-up 4 years). RESULTS: In total, 3 novel DCM subtypes were identified: profibrotic metabolic, mild nonfibrotic, and biventricular impairment. Prognosis differed between subtypes in both the derivation (P < 0.0001) and validation cohorts. The novel profibrotic metabolic subtype had more diabetes, universal myocardial fibrosis, preserved right ventricular function, and elevated creatinine. For clinical application, 5 variables were sufficient for classification (left and right ventricular end-systolic volumes, left atrial volume, myocardial fibrosis, and creatinine). Adding the novel DCM subtype improved the C-statistic from 0.60 to 0.76. Interleukin-4 receptor-alpha was identified as a novel prognostic biomarker in derivation (HR: 3.6; 95% CI: 1.9-6.5; P = 0.00002) and validation cohorts (HR: 1.94; 95% CI: 1.3-2.8; P = 0.00005). CONCLUSIONS: Three reproducible, mechanistically distinct DCM subtypes were identified using widely available clinical and biological data, adding prognostic value to traditional risk models. They may improve patient selection for novel interventions, thereby enabling precision medicine. Elsevier Biomedical 2022-06-07 /pmc/articles/PMC9168440/ /pubmed/35654493 http://dx.doi.org/10.1016/j.jacc.2022.03.375 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Investigation Tayal, Upasana Verdonschot, Job A.J. Hazebroek, Mark R. Howard, James Gregson, John Newsome, Simon Gulati, Ankur Pua, Chee Jian Halliday, Brian P. Lota, Amrit S. Buchan, Rachel J. Whiffin, Nicola Kanapeckaite, Lina Baruah, Resham Jarman, Julian W.E. O’Regan, Declan P. Barton, Paul J.R. Ware, James S. Pennell, Dudley J. Adriaans, Bouke P. Bekkers, Sebastiaan C.A.M. Donovan, Jackie Frenneaux, Michael Cooper, Leslie T. Januzzi, James L. Cleland, John G.F. Cook, Stuart A. Deo, Rahul C. Heymans, Stephane R.B. Prasad, Sanjay K. Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data |
title | Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data |
title_full | Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data |
title_fullStr | Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data |
title_full_unstemmed | Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data |
title_short | Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data |
title_sort | precision phenotyping of dilated cardiomyopathy using multidimensional data |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168440/ https://www.ncbi.nlm.nih.gov/pubmed/35654493 http://dx.doi.org/10.1016/j.jacc.2022.03.375 |
work_keys_str_mv | AT tayalupasana precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT verdonschotjobaj precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT hazebroekmarkr precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT howardjames precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT gregsonjohn precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT newsomesimon precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT gulatiankur precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT puacheejian precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT hallidaybrianp precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT lotaamrits precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT buchanrachelj precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT whiffinnicola precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT kanapeckaitelina precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT baruahresham precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT jarmanjulianwe precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT oregandeclanp precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT bartonpauljr precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT warejamess precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT pennelldudleyj precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT adriaansboukep precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT bekkerssebastiaancam precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT donovanjackie precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT frenneauxmichael precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT cooperlesliet precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT januzzijamesl precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT clelandjohngf precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT cookstuarta precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT deorahulc precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT heymansstephanerb precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata AT prasadsanjayk precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata |