Cargando…

Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data

BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multipara...

Descripción completa

Detalles Bibliográficos
Autores principales: Tayal, Upasana, Verdonschot, Job A.J., Hazebroek, Mark R., Howard, James, Gregson, John, Newsome, Simon, Gulati, Ankur, Pua, Chee Jian, Halliday, Brian P., Lota, Amrit S., Buchan, Rachel J., Whiffin, Nicola, Kanapeckaite, Lina, Baruah, Resham, Jarman, Julian W.E., O’Regan, Declan P., Barton, Paul J.R., Ware, James S., Pennell, Dudley J., Adriaans, Bouke P., Bekkers, Sebastiaan C.A.M., Donovan, Jackie, Frenneaux, Michael, Cooper, Leslie T., Januzzi, James L., Cleland, John G.F., Cook, Stuart A., Deo, Rahul C., Heymans, Stephane R.B., Prasad, Sanjay K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Biomedical 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168440/
https://www.ncbi.nlm.nih.gov/pubmed/35654493
http://dx.doi.org/10.1016/j.jacc.2022.03.375
_version_ 1784721009381736448
author Tayal, Upasana
Verdonschot, Job A.J.
Hazebroek, Mark R.
Howard, James
Gregson, John
Newsome, Simon
Gulati, Ankur
Pua, Chee Jian
Halliday, Brian P.
Lota, Amrit S.
Buchan, Rachel J.
Whiffin, Nicola
Kanapeckaite, Lina
Baruah, Resham
Jarman, Julian W.E.
O’Regan, Declan P.
Barton, Paul J.R.
Ware, James S.
Pennell, Dudley J.
Adriaans, Bouke P.
Bekkers, Sebastiaan C.A.M.
Donovan, Jackie
Frenneaux, Michael
Cooper, Leslie T.
Januzzi, James L.
Cleland, John G.F.
Cook, Stuart A.
Deo, Rahul C.
Heymans, Stephane R.B.
Prasad, Sanjay K.
author_facet Tayal, Upasana
Verdonschot, Job A.J.
Hazebroek, Mark R.
Howard, James
Gregson, John
Newsome, Simon
Gulati, Ankur
Pua, Chee Jian
Halliday, Brian P.
Lota, Amrit S.
Buchan, Rachel J.
Whiffin, Nicola
Kanapeckaite, Lina
Baruah, Resham
Jarman, Julian W.E.
O’Regan, Declan P.
Barton, Paul J.R.
Ware, James S.
Pennell, Dudley J.
Adriaans, Bouke P.
Bekkers, Sebastiaan C.A.M.
Donovan, Jackie
Frenneaux, Michael
Cooper, Leslie T.
Januzzi, James L.
Cleland, John G.F.
Cook, Stuart A.
Deo, Rahul C.
Heymans, Stephane R.B.
Prasad, Sanjay K.
author_sort Tayal, Upasana
collection PubMed
description BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multiparametric data for improved patient stratification. METHODS: Longitudinal, observational UK-derivation (n = 426; median age 54 years; 67% men) and Dutch-validation (n = 239; median age 56 years; 64% men) cohorts of DCM patients (enrolled 2009-2016) with clinical, genetic, cardiovascular magnetic resonance, and proteomic assessments. Machine learning with profile regression identified novel disease subtypes. Penalized multinomial logistic regression was used for validation. Nested Cox models compared novel groupings to conventional risk measures. Primary composite outcome was cardiovascular death, heart failure, or arrhythmia events (median follow-up 4 years). RESULTS: In total, 3 novel DCM subtypes were identified: profibrotic metabolic, mild nonfibrotic, and biventricular impairment. Prognosis differed between subtypes in both the derivation (P < 0.0001) and validation cohorts. The novel profibrotic metabolic subtype had more diabetes, universal myocardial fibrosis, preserved right ventricular function, and elevated creatinine. For clinical application, 5 variables were sufficient for classification (left and right ventricular end-systolic volumes, left atrial volume, myocardial fibrosis, and creatinine). Adding the novel DCM subtype improved the C-statistic from 0.60 to 0.76. Interleukin-4 receptor-alpha was identified as a novel prognostic biomarker in derivation (HR: 3.6; 95% CI: 1.9-6.5; P = 0.00002) and validation cohorts (HR: 1.94; 95% CI: 1.3-2.8; P = 0.00005). CONCLUSIONS: Three reproducible, mechanistically distinct DCM subtypes were identified using widely available clinical and biological data, adding prognostic value to traditional risk models. They may improve patient selection for novel interventions, thereby enabling precision medicine.
format Online
Article
Text
id pubmed-9168440
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier Biomedical
record_format MEDLINE/PubMed
spelling pubmed-91684402022-06-14 Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data Tayal, Upasana Verdonschot, Job A.J. Hazebroek, Mark R. Howard, James Gregson, John Newsome, Simon Gulati, Ankur Pua, Chee Jian Halliday, Brian P. Lota, Amrit S. Buchan, Rachel J. Whiffin, Nicola Kanapeckaite, Lina Baruah, Resham Jarman, Julian W.E. O’Regan, Declan P. Barton, Paul J.R. Ware, James S. Pennell, Dudley J. Adriaans, Bouke P. Bekkers, Sebastiaan C.A.M. Donovan, Jackie Frenneaux, Michael Cooper, Leslie T. Januzzi, James L. Cleland, John G.F. Cook, Stuart A. Deo, Rahul C. Heymans, Stephane R.B. Prasad, Sanjay K. J Am Coll Cardiol Original Investigation BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multiparametric data for improved patient stratification. METHODS: Longitudinal, observational UK-derivation (n = 426; median age 54 years; 67% men) and Dutch-validation (n = 239; median age 56 years; 64% men) cohorts of DCM patients (enrolled 2009-2016) with clinical, genetic, cardiovascular magnetic resonance, and proteomic assessments. Machine learning with profile regression identified novel disease subtypes. Penalized multinomial logistic regression was used for validation. Nested Cox models compared novel groupings to conventional risk measures. Primary composite outcome was cardiovascular death, heart failure, or arrhythmia events (median follow-up 4 years). RESULTS: In total, 3 novel DCM subtypes were identified: profibrotic metabolic, mild nonfibrotic, and biventricular impairment. Prognosis differed between subtypes in both the derivation (P < 0.0001) and validation cohorts. The novel profibrotic metabolic subtype had more diabetes, universal myocardial fibrosis, preserved right ventricular function, and elevated creatinine. For clinical application, 5 variables were sufficient for classification (left and right ventricular end-systolic volumes, left atrial volume, myocardial fibrosis, and creatinine). Adding the novel DCM subtype improved the C-statistic from 0.60 to 0.76. Interleukin-4 receptor-alpha was identified as a novel prognostic biomarker in derivation (HR: 3.6; 95% CI: 1.9-6.5; P = 0.00002) and validation cohorts (HR: 1.94; 95% CI: 1.3-2.8; P = 0.00005). CONCLUSIONS: Three reproducible, mechanistically distinct DCM subtypes were identified using widely available clinical and biological data, adding prognostic value to traditional risk models. They may improve patient selection for novel interventions, thereby enabling precision medicine. Elsevier Biomedical 2022-06-07 /pmc/articles/PMC9168440/ /pubmed/35654493 http://dx.doi.org/10.1016/j.jacc.2022.03.375 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Original Investigation
Tayal, Upasana
Verdonschot, Job A.J.
Hazebroek, Mark R.
Howard, James
Gregson, John
Newsome, Simon
Gulati, Ankur
Pua, Chee Jian
Halliday, Brian P.
Lota, Amrit S.
Buchan, Rachel J.
Whiffin, Nicola
Kanapeckaite, Lina
Baruah, Resham
Jarman, Julian W.E.
O’Regan, Declan P.
Barton, Paul J.R.
Ware, James S.
Pennell, Dudley J.
Adriaans, Bouke P.
Bekkers, Sebastiaan C.A.M.
Donovan, Jackie
Frenneaux, Michael
Cooper, Leslie T.
Januzzi, James L.
Cleland, John G.F.
Cook, Stuart A.
Deo, Rahul C.
Heymans, Stephane R.B.
Prasad, Sanjay K.
Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
title Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
title_full Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
title_fullStr Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
title_full_unstemmed Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
title_short Precision Phenotyping of Dilated Cardiomyopathy Using Multidimensional Data
title_sort precision phenotyping of dilated cardiomyopathy using multidimensional data
topic Original Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168440/
https://www.ncbi.nlm.nih.gov/pubmed/35654493
http://dx.doi.org/10.1016/j.jacc.2022.03.375
work_keys_str_mv AT tayalupasana precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT verdonschotjobaj precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT hazebroekmarkr precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT howardjames precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT gregsonjohn precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT newsomesimon precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT gulatiankur precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT puacheejian precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT hallidaybrianp precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT lotaamrits precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT buchanrachelj precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT whiffinnicola precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT kanapeckaitelina precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT baruahresham precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT jarmanjulianwe precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT oregandeclanp precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT bartonpauljr precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT warejamess precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT pennelldudleyj precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT adriaansboukep precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT bekkerssebastiaancam precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT donovanjackie precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT frenneauxmichael precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT cooperlesliet precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT januzzijamesl precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT clelandjohngf precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT cookstuarta precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT deorahulc precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT heymansstephanerb precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata
AT prasadsanjayk precisionphenotypingofdilatedcardiomyopathyusingmultidimensionaldata