Cargando…

A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity

This paper describes a fully experimental hybrid system in which a [Formula: see text] memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selecto...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi-Farsani, Javad, Ricci, Saverio, Hashemkhani, Shahin, Ielmini, Daniele, Linares-Barranco, Bernabé, Serrano-Gotarredona, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168445/
https://www.ncbi.nlm.nih.gov/pubmed/35658675
http://dx.doi.org/10.1098/rsta.2021.0018
Descripción
Sumario:This paper describes a fully experimental hybrid system in which a [Formula: see text] memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5–6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a [Formula: see text] 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue ‘Advanced neurotechnologies: translating innovation for health and well-being’.