Cargando…
A CMOS–memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity
This paper describes a fully experimental hybrid system in which a [Formula: see text] memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selecto...
Autores principales: | Ahmadi-Farsani, Javad, Ricci, Saverio, Hashemkhani, Shahin, Ielmini, Daniele, Linares-Barranco, Bernabé, Serrano-Gotarredona, Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168445/ https://www.ncbi.nlm.nih.gov/pubmed/35658675 http://dx.doi.org/10.1098/rsta.2021.0018 |
Ejemplares similares
-
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013) -
Hardware Implementation of Differential Oscillatory Neural Networks Using VO( 2)-Based Oscillators and Memristor-Bridge Circuits
por: Shamsi, Jafar, et al.
Publicado: (2021) -
On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights
por: Yousefzadeh, Amirreza, et al.
Publicado: (2018) -
An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data
por: Stromatias, Evangelos, et al.
Publicado: (2017)