Cargando…
Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline
Root systems of crops play a significant role in agroecosystems. The root system is essential for water and nutrient uptake, plant stability, symbiosis with microbes, and a good soil structure. Minirhizotrons have shown to be effective to noninvasively investigate the root system. Root traits, like...
Autores principales: | Bauer, Felix Maximilian, Lärm, Lena, Morandage, Shehan, Lobet, Guillaume, Vanderborght, Jan, Vereecken, Harry, Schnepf, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168891/ https://www.ncbi.nlm.nih.gov/pubmed/35693120 http://dx.doi.org/10.34133/2022/9758532 |
Ejemplares similares
-
Multi-year belowground data of minirhizotron facilities in Selhausen
por: Lärm, Lena, et al.
Publicado: (2023) -
Root System Scale Models Significantly Overestimate Root Water Uptake at Drying Soil Conditions
por: Khare, Deepanshu, et al.
Publicado: (2022) -
SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring
por: Rahman, Gazi, et al.
Publicado: (2020) -
3D U-Net Segmentation Improves Root System Reconstruction from 3D MRI Images in Automated and Manual Virtual Reality Work Flows
por: Selzner, Tobias, et al.
Publicado: (2023) -
Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants
por: Rajurkar, Ashish B., et al.
Publicado: (2022)