Cargando…
Development and Validation of a Risk Stratification Model of Pulmonary Ground-Glass Nodules Based on Complementary Lung-RADS 1.1 and Deep Learning Scores
PURPOSE: To assess the value of novel deep learning (DL) scores combined with complementary lung imaging reporting and data system 1.1 (cLung-RADS 1.1) in managing the risk stratification of ground-glass nodules (GGNs) and therefore improving the efficiency of lung cancer (LC) screening in China. MA...
Autores principales: | Meng, Qingcheng, Li, Bing, Gao, Pengrui, Liu, Wentao, Zhou, Peijin, Ding, Jia, Zhang, Jiaqi, Ge, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168898/ https://www.ncbi.nlm.nih.gov/pubmed/35677762 http://dx.doi.org/10.3389/fpubh.2022.891306 |
Ejemplares similares
-
Effectiveness and Feasibility of Complementary Lung-RADS Version 1.1 in Risk Stratification for pGGN in LDCT Lung Cancer Screening in a Chinese Population
por: Meng, Qingcheng, et al.
Publicado: (2020) -
Surgical Extent for Ground Glass Nodules
por: Cho, Suk Ki
Publicado: (2021) -
Concordance of the ACR TI-RADS Classification With Bethesda Scoring and Histopathology Risk Stratification of Thyroid Nodules
por: Huang, Elaine Y. F., et al.
Publicado: (2023) -
Software-based risk stratification of pulmonary adenocarcinomas manifesting as pure ground glass nodules on computed tomography
por: Nemec, Ursula, et al.
Publicado: (2017) -
Percutaneous Electromagnetic Transthoracic Nodule Localization for Ground Glass Nodules
por: Song, Seung Hwan, et al.
Publicado: (2021)