Cargando…

Autoregulation of switching behavior by cellular compartment size

Many kinds of cellular compartments comprise decision-making mechanisms that control growth and shrinkage of the compartment in response to external signals. Key examples include synaptic plasticity mechanisms that regulate the size and strength of synapses in the nervous system. However, when synap...

Descripción completa

Detalles Bibliográficos
Autores principales: Jozsa, Monika, Donchev, Tihol Ivanov, Sepulchre, Rodolphe, O’Leary, Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169097/
https://www.ncbi.nlm.nih.gov/pubmed/35349334
http://dx.doi.org/10.1073/pnas.2116054119
Descripción
Sumario:Many kinds of cellular compartments comprise decision-making mechanisms that control growth and shrinkage of the compartment in response to external signals. Key examples include synaptic plasticity mechanisms that regulate the size and strength of synapses in the nervous system. However, when synaptic compartments and postsynaptic densities are small, such mechanisms operate in a regime where chemical reactions are discrete and stochastic due to low copy numbers of the species involved. In this regime, fluctuations are large relative to mean concentrations, and inherent discreteness leads to breakdown of mass-action kinetics. Understanding how synapses and other small compartments achieve reliable switching in the low–copy number limit thus remains a key open problem. We propose a self-regulating signaling motif that exploits the breakdown of mass-action kinetics to generate a reliable size-regulated switch. We demonstrate this in simple two- and three-species chemical reaction systems and uncover a key role for inhibitory loops among species in generating switching behavior. This provides an elementary motif that could allow size-dependent regulation in more complex reaction pathways and may explain discrepant experimental results on well-studied biochemical pathways.