Cargando…

Inflammatory endothelium-targeted and cathepsin responsive nanoparticles are effective against atherosclerosis

Rationale: Atherosclerosis is characterized by lipid accumulation, plaque formation, and artery stenosis. The pharmacological treatment is a promising therapy for atherosclerosis, but this approach faces major challenges such as targeted drug delivery, controlled release, and non-specific clearance....

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Fei, Ni, Yinghao, Yu, Hongchi, Yin, Hongmei, Yang, Fan, Li, Chunli, Sun, Denglian, Pei, Tong, Ma, Jia, Deng, Li, Zhang, Huaiyi, Wang, Guixue, Li, Song, Shen, Yang, Liu, Xiaoheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169363/
https://www.ncbi.nlm.nih.gov/pubmed/35673565
http://dx.doi.org/10.7150/thno.70896
Descripción
Sumario:Rationale: Atherosclerosis is characterized by lipid accumulation, plaque formation, and artery stenosis. The pharmacological treatment is a promising therapy for atherosclerosis, but this approach faces major challenges such as targeted drug delivery, controlled release, and non-specific clearance. Methods: Based on the finding that the cathepsin k (CTSK) enzyme is enriched in atherosclerotic lesions, we constructed an integrin α(v)β(3) targeted and CTSK-responsive nanoparticle to control the release of rapamycin (RAP) locally. The targeted and responsive nanoparticles (T/R NPs) were engineered by the self-assembly of a targeting polymer PLGA-PEG-c(RGDfC) and a CTSK-sensitive polymer PLGA-Pep-PEG. PLGA-Pep-PEG was also modified with a pair of FRET probe to monitor the hydrolysis events. Results: Our results indicated that RAP@T/R NPs accelerated the release of RAP in response to CTSK stimulation in vitro, which significantly inhibited the phagocytosis of OxLDL and the release of cytokines by inflammatory macrophages. Additionally, T/R NPs had prolonged blood retention time and increased accumulation in the early and late stage of atherosclerosis lesions. RAP@T/R NPs significantly blocked the development of atherosclerosis and suppressed the systemic and local inflammation in ApoE(-/-) mice. Conclusions: RAP@T/R NPs hold a great promise as a drug delivery system for safer and more efficient therapy of atherosclerosis.