Cargando…
Effects of E-beam irradiation on the physicochemical properties of Atlantic cod (Gadus morhua)
Electron beam (E-beam) irradiation can effectively inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cold-chain seafood. This study evaluated the effects of E-beam irradiation at doses killing SARS-CoV-2 on quality indicators of Atlantic cod. The cod samples were exposed to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169420/ https://www.ncbi.nlm.nih.gov/pubmed/35693638 http://dx.doi.org/10.1016/j.fbio.2022.101803 |
Sumario: | Electron beam (E-beam) irradiation can effectively inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cold-chain seafood. This study evaluated the effects of E-beam irradiation at doses killing SARS-CoV-2 on quality indicators of Atlantic cod. The cod samples were exposed to 0, 2, 4, 7, and 10 kGy E-beam irradiation, and nutrition, texture, color, and sensory attributes were investigated. The results showed that E-beam irradiation significantly increased thiobarbituric acid (TBA) value and decreased hardness, chewiness, and a* value of Atlantic cod (P < 0.05). E-beam irradiation with 10 kGy significantly lowered total volatile base nitrogen (TVB-N) and reducing sugar content while increasing moisture and ash content (P < 0.05). A significant color change was observed after irradiation with 2 kGy–7 kGy E-beam (P < 0.05). E-beam irradiation had no effects on sensory attributes (P > 0.05). A dose of 4 kGy was recommended considering the keeping quality in Atlantic cod. |
---|