Cargando…
Bridging the gap between expressivity and efficiency in stream reasoning: a structural caching approach for IoT streams
In today’s data landscape, data streams are well represented. This is mainly due to the rise of data-intensive domains such as the Internet of Things (IoT), Smart Industries, Pervasive Health, and Social Media. To extract meaningful insights from these streams, they should be processed in real time,...
Autores principales: | Bonte, Pieter, Turck, Filip De, Ongenae, Femke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169600/ https://www.ncbi.nlm.nih.gov/pubmed/35692953 http://dx.doi.org/10.1007/s10115-022-01686-5 |
Ejemplares similares
-
Streaming MASSIF: Cascading Reasoning for Efficient Processing of IoT Data Streams
por: Bonte, Pieter, et al.
Publicado: (2018) -
Towards a Cascading Reasoning Framework to Support Responsive Ambient-Intelligent Healthcare Interventions
por: De Brouwer, Mathias, et al.
Publicado: (2018) -
An Efficient Coded Streaming Using Clients’ Cache
por: Ban, Tae-Won, et al.
Publicado: (2020) -
Develop streaming pipelines and analytics solutions for CERN’s IoT Platform
por: Quintero Vallejos, Natacha Andrea
Publicado: (2018) -
Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT Devices Using Reinforcement Learning
por: Habeeb, Fawzy, et al.
Publicado: (2022)