Cargando…

Observation of Weyl exceptional rings in thermal diffusion

A non-Hermitian Weyl equation indispensably requires a three-dimensional (3D) real/synthetic space, and it is thereby perceived that a Weyl exceptional ring (WER) will not be present in thermal diffusion given its purely dissipative nature. Here, we report a recipe for establishing a 3D parameter sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Guoqiang, Li, Wei, Zhou, Xue, Li, Huagen, Li, Ying, Fan, Shanhui, Zhang, Shuang, Christodoulides, Demetrios N., Qiu, Cheng-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169625/
https://www.ncbi.nlm.nih.gov/pubmed/35377805
http://dx.doi.org/10.1073/pnas.2110018119
_version_ 1784721240549752832
author Xu, Guoqiang
Li, Wei
Zhou, Xue
Li, Huagen
Li, Ying
Fan, Shanhui
Zhang, Shuang
Christodoulides, Demetrios N.
Qiu, Cheng-Wei
author_facet Xu, Guoqiang
Li, Wei
Zhou, Xue
Li, Huagen
Li, Ying
Fan, Shanhui
Zhang, Shuang
Christodoulides, Demetrios N.
Qiu, Cheng-Wei
author_sort Xu, Guoqiang
collection PubMed
description A non-Hermitian Weyl equation indispensably requires a three-dimensional (3D) real/synthetic space, and it is thereby perceived that a Weyl exceptional ring (WER) will not be present in thermal diffusion given its purely dissipative nature. Here, we report a recipe for establishing a 3D parameter space to imitate thermal spinor field. Two orthogonal pairs of spatiotemporally modulated advections are employed to serve as two synthetic parameter dimensions, in addition to the inherent dimension corresponding to heat exchanges. We first predict the existence of WER in our hybrid conduction–advection system and experimentally observe the WER thermal signatures verifying our theoretical prediction. When coupling two WERs of opposite topological charges, the system further exhibits surface-like and bulk topological states, manifested as stationary and continuously changing thermal processes, respectively, with good robustness. Our findings reveal the long-ignored topological nature in thermal diffusion and may empower distinct paradigms for general diffusion and dissipation controls.
format Online
Article
Text
id pubmed-9169625
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91696252022-10-04 Observation of Weyl exceptional rings in thermal diffusion Xu, Guoqiang Li, Wei Zhou, Xue Li, Huagen Li, Ying Fan, Shanhui Zhang, Shuang Christodoulides, Demetrios N. Qiu, Cheng-Wei Proc Natl Acad Sci U S A Physical Sciences A non-Hermitian Weyl equation indispensably requires a three-dimensional (3D) real/synthetic space, and it is thereby perceived that a Weyl exceptional ring (WER) will not be present in thermal diffusion given its purely dissipative nature. Here, we report a recipe for establishing a 3D parameter space to imitate thermal spinor field. Two orthogonal pairs of spatiotemporally modulated advections are employed to serve as two synthetic parameter dimensions, in addition to the inherent dimension corresponding to heat exchanges. We first predict the existence of WER in our hybrid conduction–advection system and experimentally observe the WER thermal signatures verifying our theoretical prediction. When coupling two WERs of opposite topological charges, the system further exhibits surface-like and bulk topological states, manifested as stationary and continuously changing thermal processes, respectively, with good robustness. Our findings reveal the long-ignored topological nature in thermal diffusion and may empower distinct paradigms for general diffusion and dissipation controls. National Academy of Sciences 2022-04-04 2022-04-12 /pmc/articles/PMC9169625/ /pubmed/35377805 http://dx.doi.org/10.1073/pnas.2110018119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Xu, Guoqiang
Li, Wei
Zhou, Xue
Li, Huagen
Li, Ying
Fan, Shanhui
Zhang, Shuang
Christodoulides, Demetrios N.
Qiu, Cheng-Wei
Observation of Weyl exceptional rings in thermal diffusion
title Observation of Weyl exceptional rings in thermal diffusion
title_full Observation of Weyl exceptional rings in thermal diffusion
title_fullStr Observation of Weyl exceptional rings in thermal diffusion
title_full_unstemmed Observation of Weyl exceptional rings in thermal diffusion
title_short Observation of Weyl exceptional rings in thermal diffusion
title_sort observation of weyl exceptional rings in thermal diffusion
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169625/
https://www.ncbi.nlm.nih.gov/pubmed/35377805
http://dx.doi.org/10.1073/pnas.2110018119
work_keys_str_mv AT xuguoqiang observationofweylexceptionalringsinthermaldiffusion
AT liwei observationofweylexceptionalringsinthermaldiffusion
AT zhouxue observationofweylexceptionalringsinthermaldiffusion
AT lihuagen observationofweylexceptionalringsinthermaldiffusion
AT liying observationofweylexceptionalringsinthermaldiffusion
AT fanshanhui observationofweylexceptionalringsinthermaldiffusion
AT zhangshuang observationofweylexceptionalringsinthermaldiffusion
AT christodoulidesdemetriosn observationofweylexceptionalringsinthermaldiffusion
AT qiuchengwei observationofweylexceptionalringsinthermaldiffusion