Cargando…
Simple, fast, and flexible framework for matrix completion with infinite width neural networks
Matrix completion problems arise in many applications including recommendation systems, computer vision, and genomics. Increasingly larger neural networks have been successful in many of these applications but at considerable computational costs. Remarkably, taking the width of a neural network to i...
Autores principales: | Radhakrishnan, Adityanarayanan, Stefanakis, George, Belkin, Mikhail, Uhler, Caroline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169779/ https://www.ncbi.nlm.nih.gov/pubmed/35412891 http://dx.doi.org/10.1073/pnas.2115064119 |
Ejemplares similares
-
Overparameterized neural networks implement associative memory
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2020) -
Wide and deep neural networks achieve consistency for classification
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023) -
Transfer Learning with Kernel Methods
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023) -
Cross-modal autoencoder framework learns holistic representations of cardiovascular state
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023) -
Machine Learning for Nuclear Mechano-Morphometric Biomarkers in Cancer Diagnosis
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2017)