Cargando…

A plant-specific module for homologous recombination repair

Homologous recombination repair (HR) is an error-free DNA damage repair pathway to maintain genome stability and a basis of gene targeting using genome-editing tools. However, the mechanisms of HR in plants are still poorly understood. Through genetic screens for DNA damage response mutants (DDRM) i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xuanpeng, Wang, Lili, Huang, Yongchi, Deng, Zhiping, Li, Cunliang, Zhang, Jian, Zheng, Mingxi, Yan, Shunping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169791/
https://www.ncbi.nlm.nih.gov/pubmed/35412914
http://dx.doi.org/10.1073/pnas.2202970119
Descripción
Sumario:Homologous recombination repair (HR) is an error-free DNA damage repair pathway to maintain genome stability and a basis of gene targeting using genome-editing tools. However, the mechanisms of HR in plants are still poorly understood. Through genetic screens for DNA damage response mutants (DDRM) in Arabidopsis, we find that a plant-specific ubiquitin E3 ligase DDRM1 is required for HR. DDRM1 contains an N-terminal BRCT (BRCA1 C-terminal) domain and a C-terminal RING (really interesting new gene) domain and is highly conserved in plants including mosses. The ddrm1 mutant is defective in HR and thus is hypersensitive to DNA-damaging reagents. Biochemical studies reveal that DDRM1 interacts with and ubiquitinates the transcription factor SOG1, a plant-specific master regulator of DNA damage responses. Interestingly, DDRM1-mediated ubiquitination promotes the stability of SOG1. Consistently, genetic data support that SOG1 functions downstream of DDRM1. Our study reveals that DDRM1-SOG1 is a plant-specific module for HR and highlights the importance of ubiquitination in HR.