Cargando…
Improve the Deep Learning Models in Forestry Based on Explanations and Expertise
In forestry studies, deep learning models have achieved excellent performance in many application scenarios (e.g., detecting forest damage). However, the unclear model decisions (i.e., black-box) undermine the credibility of the results and hinder their practicality. This study intends to obtain exp...
Autores principales: | Cheng, Ximeng, Doosthosseini, Ali, Kunkel, Julian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169801/ https://www.ncbi.nlm.nih.gov/pubmed/35677249 http://dx.doi.org/10.3389/fpls.2022.902105 |
Ejemplares similares
-
Forestry Digital Twin With Machine Learning in Landsat 7 Data
por: Jiang, Xuetao, et al.
Publicado: (2022) -
Expertise, Identity, and Relationships in Private Forestry Practice
por: Jamison, Abigail L., et al.
Publicado: (2023) -
A Dataset for Forestry Pest Identification
por: Liu, Bing, et al.
Publicado: (2022) -
Editorial: Ecological Consequences of Biodiversity and Biotechnology in Agriculture and Forestry
por: Weih, Martin, et al.
Publicado: (2016) -
Machine learning assisted remote forestry health assessment: a comprehensive state of the art review
por: Estrada, Juan Sebastián, et al.
Publicado: (2023)