Cargando…
Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth
Activation of inhibitor of nuclear factor NF-κB kinase subunit-β (IKKβ), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKβ knockout in Kras mutation-driven mouse models stalled th...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170026/ https://www.ncbi.nlm.nih.gov/pubmed/35476515 http://dx.doi.org/10.1073/pnas.2115071119 |
_version_ | 1784721323233116160 |
---|---|
author | Napoleon, John Victor Sagar, Satish Kubica, Sydney P. Boghean, Lidia Kour, Smit King, Hannah M. Sonawane, Yogesh A. Crawford, Ayrianne J. Gautam, Nagsen Kizhake, Smitha Bialk, Pawel A. Kmiec, Eric Mallareddy, Jayapal Reddy Patil, Prathamesh P. Rana, Sandeep Singh, Sarbjit Prahlad, Janani Grandgenett, Paul M. Borgstahl, Gloria E. O. Ghosal, Gargi Alnouti, Yazen Hollingsworth, Michael A. Radhakrishnan, Prakash Natarajan, Amarnath |
author_facet | Napoleon, John Victor Sagar, Satish Kubica, Sydney P. Boghean, Lidia Kour, Smit King, Hannah M. Sonawane, Yogesh A. Crawford, Ayrianne J. Gautam, Nagsen Kizhake, Smitha Bialk, Pawel A. Kmiec, Eric Mallareddy, Jayapal Reddy Patil, Prathamesh P. Rana, Sandeep Singh, Sarbjit Prahlad, Janani Grandgenett, Paul M. Borgstahl, Gloria E. O. Ghosal, Gargi Alnouti, Yazen Hollingsworth, Michael A. Radhakrishnan, Prakash Natarajan, Amarnath |
author_sort | Napoleon, John Victor |
collection | PubMed |
description | Activation of inhibitor of nuclear factor NF-κB kinase subunit-β (IKKβ), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKβ knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKβ and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKβ is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKβ in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKβ inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKβ but inhibited the IKKβ kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKβ phosphorylation was inhibited by 39-100, thus we termed it IKKβ activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKβ levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKβ activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway. |
format | Online Article Text |
id | pubmed-9170026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-91700262022-10-27 Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth Napoleon, John Victor Sagar, Satish Kubica, Sydney P. Boghean, Lidia Kour, Smit King, Hannah M. Sonawane, Yogesh A. Crawford, Ayrianne J. Gautam, Nagsen Kizhake, Smitha Bialk, Pawel A. Kmiec, Eric Mallareddy, Jayapal Reddy Patil, Prathamesh P. Rana, Sandeep Singh, Sarbjit Prahlad, Janani Grandgenett, Paul M. Borgstahl, Gloria E. O. Ghosal, Gargi Alnouti, Yazen Hollingsworth, Michael A. Radhakrishnan, Prakash Natarajan, Amarnath Proc Natl Acad Sci U S A Biological Sciences Activation of inhibitor of nuclear factor NF-κB kinase subunit-β (IKKβ), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKβ knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKβ and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKβ is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKβ in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKβ inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKβ but inhibited the IKKβ kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKβ phosphorylation was inhibited by 39-100, thus we termed it IKKβ activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKβ levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKβ activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway. National Academy of Sciences 2022-04-27 2022-05-03 /pmc/articles/PMC9170026/ /pubmed/35476515 http://dx.doi.org/10.1073/pnas.2115071119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Napoleon, John Victor Sagar, Satish Kubica, Sydney P. Boghean, Lidia Kour, Smit King, Hannah M. Sonawane, Yogesh A. Crawford, Ayrianne J. Gautam, Nagsen Kizhake, Smitha Bialk, Pawel A. Kmiec, Eric Mallareddy, Jayapal Reddy Patil, Prathamesh P. Rana, Sandeep Singh, Sarbjit Prahlad, Janani Grandgenett, Paul M. Borgstahl, Gloria E. O. Ghosal, Gargi Alnouti, Yazen Hollingsworth, Michael A. Radhakrishnan, Prakash Natarajan, Amarnath Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth |
title | Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth |
title_full | Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth |
title_fullStr | Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth |
title_full_unstemmed | Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth |
title_short | Small-molecule IKKβ activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth |
title_sort | small-molecule ikkβ activation modulator (ikam) targets map3k1 and inhibits pancreatic tumor growth |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170026/ https://www.ncbi.nlm.nih.gov/pubmed/35476515 http://dx.doi.org/10.1073/pnas.2115071119 |
work_keys_str_mv | AT napoleonjohnvictor smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT sagarsatish smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT kubicasydneyp smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT bogheanlidia smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT koursmit smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT kinghannahm smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT sonawaneyogesha smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT crawfordayriannej smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT gautamnagsen smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT kizhakesmitha smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT bialkpawela smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT kmieceric smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT mallareddyjayapalreddy smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT patilprathameshp smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT ranasandeep smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT singhsarbjit smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT prahladjanani smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT grandgenettpaulm smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT borgstahlgloriaeo smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT ghosalgargi smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT alnoutiyazen smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT hollingsworthmichaela smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT radhakrishnanprakash smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth AT natarajanamarnath smallmoleculeikkbactivationmodulatorikamtargetsmap3k1andinhibitspancreatictumorgrowth |