Cargando…

Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease

The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Toyama, Yuki, Harkness, Robert W., Kay, Lewis E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170070/
https://www.ncbi.nlm.nih.gov/pubmed/35452308
http://dx.doi.org/10.1073/pnas.2203172119
_version_ 1784721333541666816
author Toyama, Yuki
Harkness, Robert W.
Kay, Lewis E.
author_facet Toyama, Yuki
Harkness, Robert W.
Kay, Lewis E.
author_sort Toyama, Yuki
collection PubMed
description The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)–based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.
format Online
Article
Text
id pubmed-9170070
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91700702022-10-22 Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease Toyama, Yuki Harkness, Robert W. Kay, Lewis E. Proc Natl Acad Sci U S A Biological Sciences The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)–based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation. National Academy of Sciences 2022-04-22 2022-04-26 /pmc/articles/PMC9170070/ /pubmed/35452308 http://dx.doi.org/10.1073/pnas.2203172119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Toyama, Yuki
Harkness, Robert W.
Kay, Lewis E.
Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease
title Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease
title_full Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease
title_fullStr Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease
title_full_unstemmed Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease
title_short Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease
title_sort structural basis of protein substrate processing by human mitochondrial high-temperature requirement a2 protease
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170070/
https://www.ncbi.nlm.nih.gov/pubmed/35452308
http://dx.doi.org/10.1073/pnas.2203172119
work_keys_str_mv AT toyamayuki structuralbasisofproteinsubstrateprocessingbyhumanmitochondrialhightemperaturerequirementa2protease
AT harknessrobertw structuralbasisofproteinsubstrateprocessingbyhumanmitochondrialhightemperaturerequirementa2protease
AT kaylewise structuralbasisofproteinsubstrateprocessingbyhumanmitochondrialhightemperaturerequirementa2protease