Cargando…

Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation

Free energy evaluation in molecular simulations of both classical and quantum systems is computationally intensive and requires sophisticated algorithms. This is because free energy depends on the volume of accessible phase space, a quantity that is inextricably linked to the integration measure in...

Descripción completa

Detalles Bibliográficos
Autores principales: Fredrickson, Glenn H., Delaney, Kris T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170146/
https://www.ncbi.nlm.nih.gov/pubmed/35471906
http://dx.doi.org/10.1073/pnas.2201804119
_version_ 1784721350539083776
author Fredrickson, Glenn H.
Delaney, Kris T.
author_facet Fredrickson, Glenn H.
Delaney, Kris T.
author_sort Fredrickson, Glenn H.
collection PubMed
description Free energy evaluation in molecular simulations of both classical and quantum systems is computationally intensive and requires sophisticated algorithms. This is because free energy depends on the volume of accessible phase space, a quantity that is inextricably linked to the integration measure in a coordinate representation of a many-body problem. In contrast, the same problem expressed as a field theory (auxiliary field or coherent states) isolates the particle number as a simple parameter in the Hamiltonian or action functional and enables the identification of a chemical potential field operator. We show that this feature leads a “direct” method of free energy evaluation, in which a particle model is converted to a field theory and appropriate field operators are averaged using a field-theoretic simulation conducted with complex Langevin sampling. These averages provide an immediate estimate of the Helmholtz free energy in the canonical ensemble and the entropy in the microcanonical ensemble. The method is illustrated for a classical polymer solution, a block copolymer melt exhibiting liquid crystalline and solid mesophases, and a quantum fluid of interacting bosons.
format Online
Article
Text
id pubmed-9170146
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91701462022-10-26 Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation Fredrickson, Glenn H. Delaney, Kris T. Proc Natl Acad Sci U S A Physical Sciences Free energy evaluation in molecular simulations of both classical and quantum systems is computationally intensive and requires sophisticated algorithms. This is because free energy depends on the volume of accessible phase space, a quantity that is inextricably linked to the integration measure in a coordinate representation of a many-body problem. In contrast, the same problem expressed as a field theory (auxiliary field or coherent states) isolates the particle number as a simple parameter in the Hamiltonian or action functional and enables the identification of a chemical potential field operator. We show that this feature leads a “direct” method of free energy evaluation, in which a particle model is converted to a field theory and appropriate field operators are averaged using a field-theoretic simulation conducted with complex Langevin sampling. These averages provide an immediate estimate of the Helmholtz free energy in the canonical ensemble and the entropy in the microcanonical ensemble. The method is illustrated for a classical polymer solution, a block copolymer melt exhibiting liquid crystalline and solid mesophases, and a quantum fluid of interacting bosons. National Academy of Sciences 2022-04-26 2022-05-03 /pmc/articles/PMC9170146/ /pubmed/35471906 http://dx.doi.org/10.1073/pnas.2201804119 Text en Copyright © 2022 the Author(s). Published by PNAS https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Fredrickson, Glenn H.
Delaney, Kris T.
Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
title Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
title_full Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
title_fullStr Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
title_full_unstemmed Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
title_short Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
title_sort direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170146/
https://www.ncbi.nlm.nih.gov/pubmed/35471906
http://dx.doi.org/10.1073/pnas.2201804119
work_keys_str_mv AT fredricksonglennh directfreeenergyevaluationofclassicalandquantummanybodysystemsviafieldtheoreticsimulation
AT delaneykrist directfreeenergyevaluationofclassicalandquantummanybodysystemsviafieldtheoreticsimulation