Cargando…

An antagonistic pleiotropic gene regulates the reproduction and longevity tradeoff

The antagonistic pleiotropy theory of aging proposes that genes enhancing fitness in early life limit the lifespan, but the molecular evidence remains underexplored. By profiling translatome changes in Caenorhabditis elegans during starvation recovery, we find that an open reading frame (ORF) trl-1...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Dou, Wang, Zi, Huang, Jingying, Huang, Liang, Zhang, Songbo, Zhao, Ruixue, Li, Wei, Chen, Di, Ou, Guangshuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170148/
https://www.ncbi.nlm.nih.gov/pubmed/35482917
http://dx.doi.org/10.1073/pnas.2120311119
Descripción
Sumario:The antagonistic pleiotropy theory of aging proposes that genes enhancing fitness in early life limit the lifespan, but the molecular evidence remains underexplored. By profiling translatome changes in Caenorhabditis elegans during starvation recovery, we find that an open reading frame (ORF) trl-1 “hidden” within an annotated pseudogene significantly translates upon refeeding. trl-1 mutant animals increase brood sizes but shorten the lifespan and specifically impair germline deficiency–induced longevity. The loss of trl-1 abnormally up-regulates the translation of vitellogenin that produces copious yolk to provision eggs, whereas vitellogenin overexpression is known to reduce the lifespan. We show that the TRL-1 protein undergoes liquid–liquid phase separation (LLPS), through which TRL-1 granules recruit vitellogenin messenger RNA and inhibit its translation. These results indicate that trl-1 functions as an antagonistic pleiotropic gene to regulate the reproduction–longevity tradeoff by optimizing nutrient production for the next generation.