Cargando…
Classification of SARS-CoV-2 viral genome sequences using Neurochaos Learning
ABSTRACT: The high spread rate of SARS-CoV-2 virus has put the researchers all over the world in a demanding situation. The need of the hour is to develop novel learning algorithms that can effectively learn a general pattern by training with fewer genome sequences of coronavirus. Learning from very...
Autores principales: | Harikrishnan, N. B., Pranay, S. Y., Nagaraj, Nithin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170350/ https://www.ncbi.nlm.nih.gov/pubmed/35668230 http://dx.doi.org/10.1007/s11517-022-02591-3 |
Ejemplares similares
-
New proposal of viral genome representation applied in the classification of SARS-CoV-2 with deep learning
por: de Souza, Luísa C., et al.
Publicado: (2023) -
SARS-CoV-2 genomics: An Indian perspective on sequencing viral variants
por: Srivastava, Surabhi, et al.
Publicado: (2021) -
Classification of SARS-CoV-2 and non-SARS-CoV-2 using machine learning algorithms
por: Singh, Om Prakash, et al.
Publicado: (2021) -
Viral loads of SARS-CoV, MERS-CoV and SARS-CoV-2 in respiratory specimens: What have we learned?
por: Al-Tawfiq, Jaffar A.
Publicado: (2020) -
368. Performance Characteristics of Sequencing Assays for Identification of the SARS-CoV-2 Viral Genome
por: Antaki, Danny, et al.
Publicado: (2021)